def load_calib_rescale(): args = lambda: None args.n_unit = 80 args.optimizer_name = "adam" args.beta1 = 0.5 args.beta2 = 0.9 args.learning_rate = 1e-4 args.n_samples = 1000 args.n_steps = 1000 args.batch_size = 20 args.net = CALIB_ARCHI(n_in=1, n_out=2, n_unit=args.n_unit) args.optimizer = get_optimizer(args) model = get_model(args, Regressor) model.base_name = CALIB_RESCALE model.set_info(DATA_NAME, BENCHMARK_NAME, 0) model.load(model.model_path) return model
def load_calib_lam(DATA_NAME, BENCHMARK_NAME): from model.regressor import Regressor from archi.reducer import A1AR8MR8L1 as CALIB_ARCHI args = lambda: None args.n_unit = 200 args.optimizer_name = "adam" args.beta1 = 0.5 args.beta2 = 0.9 args.learning_rate = 1e-4 args.n_samples = 1000 args.n_steps = 2000 args.batch_size = 20 args.net = CALIB_ARCHI(n_in=3, n_out=2, n_unit=args.n_unit) args.optimizer = get_optimizer(args) model = get_model(args, Regressor) model.base_name = "Calib_lam" model.set_info(DATA_NAME, BENCHMARK_NAME, 0) model.load(model.model_path) return model