def test_point_map(): x_data = [] y_data = [] x_data.append(-73.96524) x_data.append(-73.96118) x_data.append(-73.97324) x_data.append(-73.98456) y_data.append(40.73747) y_data.append(40.74507) y_data.append(40.75890) y_data.append(40.77654) arr_x = pandas.Series(x_data) arr_y = pandas.Series(y_data) points = arctern.ST_Point(arr_x, arr_y) vega = vega_pointmap( 1024, 896, bounding_box=[-73.998427, 40.730309, -73.954348, 40.780816], point_size=10, point_color="#0000FF", opacity=1.0, coordinate_system="EPSG:4326") curve_z1 = arctern.point_map_layer(vega, points) save_png(curve_z1, "/tmp/test_curve_z1.png")
def plot_pointmap(ax, points, bounding_box, coordinate_system='EPSG:4326', point_size=3, point_color='red', point_opacity=1.0, **extra_contextily_params): """ :type ax: AxesSubplot :param ax: Matplotlib axes object on which to add the basemap. :type points: Series(dtype: object) :param points: Points in WKB form :type bounding_box: (float, float, float, float) :param bounding_box: The bounding rectangle, as a [left, upper, right, lower]-tuple. value should be of :coordinate_system: :type coordinate_system: str :param coordinate_system: either 'EPSG:4326' or 'EPSG:3857' :type point_szie: int :param point_size: size of point :type point_color: str :param point_color: specify color, using matplotlib.colors :type opacity: float :param opacity: opacity of point :type extra_contextily_params: dict :param extra_contextily_params: extra parameters for contextily.add_basemap. See https://contextily.readthedocs.io/en/latest/reference.html """ from matplotlib import colors, pyplot as plt import contextily as cx bbox = _transform_bbox(bounding_box, coordinate_system, 'epsg:3857') color_hex = colors.to_hex(point_color) w, h = _get_recom_size(bbox[2] - bbox[0], bbox[3] - bbox[1]) vega = vega_pointmap(w, h, bounding_box=bounding_box, point_size=point_size, point_color=color_hex, opacity=point_opacity, coordinate_system=coordinate_system) hexstr = arctern.point_map_layer(vega, points) f = io.BytesIO(base64.b64decode(hexstr)) img = plt.imread(f) ax.set(xlim=(bbox[0], bbox[2]), ylim=(bbox[1], bbox[3])) cx.add_basemap(ax, **extra_contextily_params) ax.imshow(img, alpha=img[:, :, 3], extent=(bbox[0], bbox[2], bbox[1], bbox[3]))
def pointmap(ax, points, bounding_box, point_size=3, point_color='#115f9a', opacity=1.0, coordinate_system='EPSG:3857', **extra_contextily_params): """ Plot pointmap in Matplotlib :type ax: AxesSubplot :param ax: Matplotlib axes object on which to add the basemap. :type points: GeoSeries :param points: Sequence of Points :type bounding_box: list :param bounding_box: Specify the bounding rectangle [west, south, east, north]. :type point_size: int :param point_size: Diameter of point, default as 3 :type point_color: str :param point_color: Specify point color in Hex Color Code, default as "#115f9a" :type opacity: float :param opacity: Opacity of point, ranged from 0.0 to 1.0, default as 1.0 :type coordinate_system: str :param coordinate_system: Coordinate Reference System of the geometry objects. Must be SRID formed, e.g. 'EPSG:4326' or 'EPSG:3857' Default as 'EPSG:3857' :type extra_contextily_params: dict :param extra_contextily_params: Extra parameters will be passed to contextily.add_basemap. See https://contextily.readthedocs.io/en/latest/reference.html for details :example: >>> import pandas as pd >>> import numpy as np >>> import arctern >>> import matplotlib.pyplot as plt >>> # read from test.csv >>> # Download link: https://raw.githubusercontent.com/arctern-io/arctern-resources/benchmarks/benchmarks/dataset/layer_rendering_test_data/test_data.csv >>> df = pd.read_csv("/path/to/test_data.csv", dtype={'longitude':np.float64, 'latitude':np.float64, 'color_weights':np.float64, 'size_weights':np.float64, 'region_boundaries':np.object}) >>> points = arctern.GeoSeries.point(df['longitude'], df['latitude']) >>> # plot pointmap >>> fig, ax = plt.subplots(figsize=(10, 6), dpi=200) >>> arctern.plot.pointmap(ax, points, [-74.01398981737215,40.71353244267465,-73.96979949831308,40.74480271529791], point_size=10, point_color='#115f9a',coordinate_system="EPSG:4326") >>> plt.show() """ from matplotlib import pyplot as plt import contextily as cx bbox = _transform_bbox(bounding_box, coordinate_system, 'epsg:3857') w, h = _get_recom_size(bbox[2] - bbox[0], bbox[3] - bbox[1]) vega = vega_pointmap(w, h, bounding_box=bounding_box, point_size=point_size, point_color=point_color, opacity=opacity, coordinate_system=coordinate_system) hexstr = arctern.point_map_layer(vega, points) f = io.BytesIO(base64.b64decode(hexstr)) img = plt.imread(f) ax.set(xlim=(bbox[0], bbox[2]), ylim=(bbox[1], bbox[3])) cx.add_basemap(ax, **extra_contextily_params) ax.imshow(img, alpha=img[:, :, 3], extent=(bbox[0], bbox[2], bbox[1], bbox[3])) ax.axis('off')
def pointmap(ax, points, bounding_box, point_size=3, point_color='#115f9a', opacity=1.0, coordinate_system='EPSG:3857', **extra_contextily_params): """ Plots a point map in Matplotlib. Parameters ---------- ax : matplotlib.axes.Axes Axes where geometries will be plotted. points : GeoSeries Sequence of points. bounding_box : list Bounding box of the map. For example, [west, south, east, north]. point_size : int, optional Diameter of points, by default 3. point_color : str, optional Point color in Hex Color Code, by default '#115f9a'. opacity : float, optional Opacity of points, ranged from 0.0 to 1.0, by default 1.0. coordinate_system : str, optional The Coordinate Reference System (CRS) set to all geometries, by default 'EPSG:3857'. Only supports SRID as a WKT representation of CRS by now. **extra_contextily_params: dict Extra parameters passed to `contextily.add_basemap. <https://contextily.readthedocs.io/en/latest/reference.html>`_ Examples ------- >>> import pandas as pd >>> import numpy as np >>> import arctern >>> import matplotlib.pyplot as plt >>> # read from test.csv >>> # Download link: https://raw.githubusercontent.com/arctern-io/arctern-resources/benchmarks/benchmarks/dataset/layer_rendering_test_data/test_data.csv >>> df = pd.read_csv("/path/to/test_data.csv", dtype={'longitude':np.float64, 'latitude':np.float64, 'color_weights':np.float64, 'size_weights':np.float64, 'region_boundaries':np.object}) >>> points = arctern.GeoSeries.point(df['longitude'], df['latitude']) >>> # plot pointmap >>> fig, ax = plt.subplots(figsize=(10, 6), dpi=200) >>> arctern.plot.pointmap(ax, points, [-74.01398981737215,40.71353244267465,-73.96979949831308,40.74480271529791], point_size=10, point_color='#115f9a',coordinate_system="EPSG:4326") >>> plt.show() """ from matplotlib import pyplot as plt import contextily as cx bbox = _transform_bbox(bounding_box, coordinate_system, 'epsg:3857') w, h = _get_recom_size(bbox[2] - bbox[0], bbox[3] - bbox[1]) vega = vega_pointmap(w, h, bounding_box=bounding_box, point_size=point_size, point_color=point_color, opacity=opacity, coordinate_system=coordinate_system) hexstr = arctern.point_map_layer(vega, points) f = io.BytesIO(base64.b64decode(hexstr)) img = plt.imread(f) ax.set(xlim=(bbox[0], bbox[2]), ylim=(bbox[1], bbox[3])) cx.add_basemap(ax, **extra_contextily_params) ax.imshow(img, alpha=img[:, :, 3], extent=(bbox[0], bbox[2], bbox[1], bbox[3])) ax.axis('off')
def pointmap_wkb(point, conf=vega): from arctern import point_map_layer return point_map_layer(conf, point, False)