コード例 #1
0
ファイル: data.py プロジェクト: sapan-ostic/deep_prediction
 def __init__(self,
              root_dir='argoverse-data//data',
              avm=None,
              social=False,
              train_seq_size=20,
              cuda=False,
              test=False,
              oracle=True):
     super(Argoverse_LaneCentre_Data,
           self).__init__(root_dir, train_seq_size, cuda, test)
     if avm is None:
         self.avm = ArgoverseMap()
     else:
         self.avm = avm
     self.stationary_threshold = 2.0
     self.oracle = oracle
     print("Done loading map")
コード例 #2
0
        def map_features_helper(locations,
                                dfs_threshold_multiplier=2.0,
                                save_str="",
                                avm=None,
                                mfu=None,
                                rotation=None,
                                translation=None,
                                generate_candidate_centerlines=0,
                                compute_all=False):
            # Initialize map utilities if not provided
            if avm is None:
                avm = ArgoverseMap()
            if mfu is None:
                mfu = MapFeaturesUtils()

            # Get best-fitting (oracle) centerline for current vehicle
            heuristic_oracle_centerline = mfu.get_candidate_centerlines_for_trajectory(
                locations,
                city,
                avm=avm,
                viz=False,
                max_candidates=generate_candidate_centerlines,
                mode='train')[0]  # NOQA
            features = {
                "HEURISTIC_ORACLE_CENTERLINE" + save_str:
                heuristic_oracle_centerline,
                "HEURISTIC_ORACLE_CENTERLINE_NORMALIZED" + save_str:
                normalize_xy(heuristic_oracle_centerline,
                             translation=translation,
                             rotation=rotation)[0]  # NOQA
            }

            # Get top-fitting candidate centerlines for current vehicle (can beused at test time)
            if compute_all:
                if generate_candidate_centerlines > 0:
                    test_candidate_centerlines = mfu.get_candidate_centerlines_for_trajectory(
                        locations,
                        city,
                        avm=avm,
                        viz=False,
                        max_candidates=generate_candidate_centerlines,
                        mode='test')  # NOQA
                    features["TEST_CANDIDATE_CENTERLINES" +
                             save_str] = test_candidate_centerlines

                # Apply rotation and translation normalization if specified
                if rotation is not None or translation is not None:
                    if generate_candidate_centerlines > 0:
                        features['TEST_CANDIDATE_CENTERLINE_NORMALIZED' +
                                 save_str] = [
                                     normalize_xy(test_candidate_centerline,
                                                  translation=translation,
                                                  rotation=rotation)[0]
                                     for test_candidate_centerline in
                                     test_candidate_centerlines
                                 ]  # NOQA
            return features
コード例 #3
0
    def __init__(self, question_h5, image_feature_h5_path, lidar_feature_h5_path,vocab,load_lidar=True,npoint=1024,normal_channel=True,uniform=False,cache_size=15000,drivable_area=False,
                 mode='prefix', image_h5=None, lidar_h5=None, max_samples=None, question_families=None,
                 image_idx_start_from=None):

        #############read whole question_h5 file in memory#############################
        self.all_questions = question_h5['questions'][:]
        self.all_answers = get_answer_classes(question_h5['answers'][:], vocab)
        self.all_image_idxs = question_h5['image_idxs'][:]
        self.all_video_names = (question_h5['video_names'][:]).astype(str)
        self.questions_length = question_h5['question_length'][:]
        self.image_feature_h5 = image_feature_h5_path
        self.load_lidar=load_lidar

        ############for lidar##########################################################
        if self.load_lidar:
            self.argoverse_loader = ArgoverseTrackingLoader(lidar_feature_h5_path)
            self.am = ArgoverseMap()
            self.drivable_area=drivable_area
コード例 #4
0
def visualize_ground_lidar_pts(log_id: str, dataset_dir: str, experiment_prefix: str):
    """Process a log by drawing the LiDAR returns that are classified as belonging
    to the ground surface in a red to green colormap in the image.

    Args:
        log_id: The ID of a log
        dataset_dir: Where the dataset is stored
        experiment_prefix: Output prefix
    """
    sdb = SynchronizationDB(dataset_dir, collect_single_log_id=log_id)

    city_info_fpath = f"{dataset_dir}/{log_id}/city_info.json"
    city_info = read_json_file(city_info_fpath)
    city_name = city_info["city_name"]
    avm = ArgoverseMap()

    ply_fpaths = sorted(glob.glob(f"{dataset_dir}/{log_id}/lidar/PC_*.ply"))

    for i, ply_fpath in enumerate(ply_fpaths):
        if i % 500 == 0:
            print(f"\tOn file {i} of {log_id}")
        lidar_timestamp_ns = ply_fpath.split("/")[-1].split(".")[0].split("_")[-1]

        pose_fpath = f"{dataset_dir}/{log_id}/poses/city_SE3_egovehicle_{lidar_timestamp_ns}.json"
        if not Path(pose_fpath).exists():
            continue

        pose_data = read_json_file(pose_fpath)
        rotation = np.array(pose_data["rotation"])
        translation = np.array(pose_data["translation"])
        city_to_egovehicle_se3 = SE3(rotation=quat2rotmat(rotation), translation=translation)

        lidar_pts = load_ply(ply_fpath)

        lidar_timestamp_ns = int(lidar_timestamp_ns)
        draw_ground_pts_in_image(
            sdb,
            lidar_pts,
            city_to_egovehicle_se3,
            avm,
            log_id,
            lidar_timestamp_ns,
            city_name,
            dataset_dir,
            experiment_prefix,
        )

    for camera_name in CAMERA_LIST:
        if "stereo" in camera_name:
            fps = 5
        else:
            fps = 10
        cmd = f"ffmpeg -r {fps} -f image2 -i '{experiment_prefix}_ground_viz/{log_id}/{camera_name}/%*.jpg' {experiment_prefix}_ground_viz/{experiment_prefix}_{log_id}_{camera_name}_{fps}fps.mp4"

        print(cmd)
        run_command(cmd)
コード例 #5
0
def test_remove_extended_predecessors() -> None:
    """Test remove_extended_predecessors() for map_api"""

    lane_seqs = [
        [9621385, 9619110, 9619209, 9631133],
        [9621385, 9619110, 9619209],
        [9619209, 9631133],
    ]
    xy = np.array([[-130.0, 2315.0], [-129.0, 2315.0],
                   [-128.0, 2315.0]])  # 9619209 comntains xy[0]
    city_name = "MIA"

    avm = ArgoverseMap()
    filtered_lane_seq = avm.remove_extended_predecessors(
        lane_seqs, xy, city_name)

    assert np.array_equal(filtered_lane_seq,
                          [[9619209, 9631133], [9619209], [9619209, 9631133]
                           ]), "remove_extended_predecessors() failed!"
コード例 #6
0
ファイル: helper.py プロジェクト: nabeelhthussain/ECCO
def get_all_lanes(city_name: str, avm: Optional[ArgoverseMap] = None) -> list:
    
    # Get API for Argo Dataset map
    avm = ArgoverseMap() if avm is None else avm
    seq_lane_bbox = avm.city_halluc_bbox_table[city_name]
    seq_lane_props = avm.city_lane_centerlines_dict[city_name]

    lane_centerlines = [lane.centerline for lane in seq_lane_props.values()]
    
    return lane_centerlines
コード例 #7
0
    def __init__(self, split, config, train=True):
        self.config = config
        self.train = train

        if 'preprocess' in config and config['preprocess']:
            if train:
                self.split = np.load(self.config['preprocess_train'],
                                     allow_pickle=True)
            else:
                self.split = np.load(self.config['preprocess_val'],
                                     allow_pickle=True)
        else:
            self.avl = ArgoverseForecastingLoader(split)
            self.avl.seq_list = sorted(self.avl.seq_list)
            self.am = ArgoverseMap()

        if 'raster' in config and config['raster']:
            #TODO: DELETE
            self.map_query = MapQuery(config['map_scale'])
コード例 #8
0
def visualize_forecating_data_on_map(args: Any) -> None:
    print("Loading map...")
    avm = ArgoverseMap()
    fomv = ForecastingOnMapVisualizer(
        dataset_dir=args.dataset_dir,
        save_img=args.save_image,
        overwrite_rendered_file=args.overwrite_rendered_file)
    for i in range(fomv.num):
        print(f"Processing the file: {fomv.filenames[i]}")
        fomv.plot_log_one_at_a_time(avm, log_num=i)
コード例 #9
0
    def __init__(self, cfg):
        super().__init__()
        self.am = ArgoverseMap()

        self.axis_range = self.get_map_range(self.am)
        self.city_halluc_bbox_table, self.city_halluc_tableidx_to_laneid_map = self.am.build_hallucinated_lane_bbox_index(
        )
        self.laneid_map = self.process_laneid_map()
        self.vector_map, self.extra_map = self.generate_vector_map()
        # am.draw_lane(city_halluc_tableidx_to_laneid_map['PIT']['494'], 'PIT')
        # self.save_vector_map(self.vector_map)

        self.last_observe = cfg['last_observe']
        ##set root_dir to the correct path to your dataset folder
        self.root_dir = cfg['data_locate']
        self.afl = ArgoverseForecastingLoader(self.root_dir)
        self.map_feature = dict(PIT=[], MIA=[])
        self.city_name, self.center_xy, self.rotate_matrix = dict(), dict(
        ), dict()
コード例 #10
0
def verify_manhattan_search_functionality():
    """
        Minimal example where we
        """
    adm = ArgoverseMap()
    # query_x = 254.
    # query_y = 1778.

    ref_query_x = 422.0
    ref_query_y = 1005.0

    city_name = "PIT"  # 'MIA'
    for trial_idx in range(10):
        query_x = ref_query_x + (np.random.rand() - 0.5) * 10
        query_y = ref_query_y + (np.random.rand() - 0.5) * 10

        # query_x,query_y = (3092.49845414,1798.55426805)
        query_x, query_y = (3112.80160113, 1817.07585338)

        lane_segment_ids = avm.get_lane_ids_in_xy_bbox(query_x, query_y,
                                                       city_name, 5000)

        fig = plt.figure(figsize=(22.5, 8))
        ax = fig.add_subplot(111)
        # ax.scatter([query_x], [query_y], 500, color='k', marker='.')

        plot_lane_segment_patch(pittsburgh_bounds, ax, color="m", alpha=0.1)

        if len(lane_segment_ids) > 0:
            for i, lane_segment_id in enumerate(lane_segment_ids):
                patch_color = "y"  # patch_colors[i % 4]
                lane_centerline = avm.get_lane_segment_centerline(
                    lane_segment_id, city_name)

                test_x, test_y = lane_centerline.mean(axis=0)
                inside = point_inside_polygon(n_poly_vertices,
                                              pittsburgh_bounds[:, 0],
                                              pittsburgh_bounds[:, 1], test_x,
                                              test_y)

                if inside:
                    halluc_lane_polygon = avm.get_lane_segment_polygon(
                        lane_segment_id, city_name)
                    xmin, ymin, xmax, ymax = find_lane_segment_bounds_in_table(
                        adm, city_name, lane_segment_id)
                    add_lane_segment_to_ax(ax, lane_centerline,
                                           halluc_lane_polygon, patch_color,
                                           xmin, xmax, ymin, ymax)

        ax.axis("equal")
        plt.show()
        datetime_str = generate_datetime_string()
        plt.savefig(f"{trial_idx}_{datetime_str}.jpg")
        plt.close("all")
コード例 #11
0
    def __init__(self, data_dir, obs_len=20, position_downscaling_factor=100):
        """
        Args:
            inp_dir: Directory with all trajectories
            obs_len: length of observed trajectory
        """
        self.data_dir = data_dir
        self.obs_len = obs_len
        self.position_downscaling_factor = position_downscaling_factor

        assert os.path.isdir(data_dir), 'Invalid Data Directory'
        self.afl = ArgoverseForecastingLoader(data_dir)
        self.avm = ArgoverseMap()
コード例 #12
0
 def __init__(self,
              root_dir='argoverse-data//data',
              avm=None,
              train_seq_size=20,
              mode="train",
              save=False,
              load_saved=False):
     super(Argoverse_MultiLane_Data, self).__init__(root_dir,
                                                    train_seq_size)
     if avm is None:
         self.avm = ArgoverseMap()
     else:
         self.avm = avm
     # if mode=="train":
     #     with open('train.pkl', 'rb') as f:
     #         self.seq_paths=pickle.load(f)
     # elif mode=="validate":
     #     with open('val.pkl', 'rb') as f:
     #         self.seq_paths=pickle.load(f)
     self.map_features_utils_instance = MapFeaturesUtils()
     self.social_features_utils_instance = SocialFeaturesUtils()
     self.mode = mode
     self.save = save
     self.load_saved = load_saved
コード例 #13
0
def plot_nearby_halluc_lanes(
    ax: plt.Axes,
    city_name: str,
    avm: ArgoverseMap,
    query_x: float,
    query_y: float,
    patch_color: str = "r",
    radius: float = 20.0,
) -> None:
    """Produce lane segment graphs for visual verification."""
    nearby_lane_ids = avm.get_lane_ids_in_xy_bbox(query_x, query_y, city_name,
                                                  radius)
    for nearby_lane_id in nearby_lane_ids:
        halluc_lane_polygon = avm.get_lane_segment_polygon(
            nearby_lane_id, city_name)
        plot_lane_segment_patch(halluc_lane_polygon,
                                ax,
                                color=patch_color,
                                alpha=0.3)
        plt.text(
            halluc_lane_polygon[:, 0].mean(),
            halluc_lane_polygon[:, 1].mean(),
            str(nearby_lane_id),
        )
コード例 #14
0
def get_pruned_guesses(
    forecasted_trajectories: Dict[int, List[np.ndarray]],
    city_names: Dict[int, str],
    gt_trajectories: Dict[int, np.ndarray],
) -> Dict[int, List[np.ndarray]]:
    """Prune the number of guesses using map.

    Args:
        forecasted_trajectories: Trajectories forecasted by the algorithm.
        city_names: Dict mapping sequence id to city name.
        gt_trajectories: Ground Truth trajectories.

    Returns:
        Pruned number of forecasted trajectories.

    """
    args = parse_arguments()
    avm = ArgoverseMap()

    pruned_guesses = {}

    for seq_id, trajectories in forecasted_trajectories.items():

        city_name = city_names[seq_id]
        da_points = []
        for trajectory in trajectories:
            raster_layer = avm.get_raster_layer_points_boolean(
                trajectory, city_name, "driveable_area")
            da_points.append(np.sum(raster_layer))

        sorted_idx = np.argsort(da_points)[::-1]
        pruned_guesses[seq_id] = [
            trajectories[i] for i in sorted_idx[:args.prune_n_guesses]
        ]

    return pruned_guesses
コード例 #15
0
 def __init__(self,root,train = True,test = False):
     '''
     根据路径获得数据,并根据训练、验证、测试划分数据
     train_data 和 test_data路径分开
     '''
     self.test = test
     afl = ArgoverseForecastingLoader(root)
     self.avm = ArgoverseMap()
     
     if self.test:
         self.afl = afl
     elif train:
         self.afl = afl[:int(0.7*len(afl))]
     else:
         self.afl = afl[int(0.7*len(afl)):]
コード例 #16
0
    def __init__(self, split, config, train=False):

        self.config = config
        self.train = train
        split2 = config['val_split'] if split=='val' else config['test_split']
        split = self.config['preprocess_val'] if split=='val' else self.config['preprocess_test']

        self.avl = ArgoverseForecastingLoader(split2)
        if 'preprocess' in config and config['preprocess']:
            if train:
                self.split = np.load(split, allow_pickle=True)
            else:
                self.split = np.load(split, allow_pickle=True)
        else:
            self.avl = ArgoverseForecastingLoader(split)
            self.am = ArgoverseMap()
コード例 #17
0
def draw_lane_ids(lane_ids: List[int], am: ArgoverseMap, ax: Axes,
                  city_name: str) -> None:
    """
        Args:
        -   lane_ids
        -   am
        -   ax
        -   city_name

        Returns:
        -   None
    """
    for lane_id in lane_ids:
        centerline = am.get_lane_segment_centerline(int(lane_id), city_name)
        ax.text(centerline[2, 0], centerline[2, 1], f"s_{lane_id}")
        ax.text(centerline[-3, 0], centerline[-3, 1], f"e_{lane_id}")
コード例 #18
0
def build_city_lane_graphs(
        am: ArgoverseMap) -> Mapping[str, Mapping[int, List[int]]]:
    """
        Args:
        -   am

        Returns:
        -   city_graph_dict
    """
    city_lane_centerlines_dict = am.build_centerline_index()

    city_graph_dict = {}
    for city_name in ["MIA", "PIT"]:
        city_graph = {}

        for lane_id, segment in city_lane_centerlines_dict[city_name].items():
            # allow left/right lane changes
            if segment.l_neighbor_id:
                if lanes_travel_same_direction(lane_id, segment.l_neighbor_id,
                                               am, city_name):
                    city_graph.setdefault(str(lane_id), []).append(
                        str(segment.l_neighbor_id))

            if segment.r_neighbor_id:
                if lanes_travel_same_direction(lane_id, segment.r_neighbor_id,
                                               am, city_name):
                    city_graph.setdefault(str(lane_id), []).append(
                        str(segment.r_neighbor_id))

            if segment.predecessors:
                for pred_id in segment.predecessors:
                    city_graph.setdefault(str(pred_id),
                                          []).append(str(lane_id))

            if segment.successors:
                for succ_id in segment.successors:
                    city_graph.setdefault(str(lane_id),
                                          []).append(str(succ_id))

        for k, v in city_graph.items():
            city_graph[k] = list(set(v))
            city_graph[k].sort()

        city_graph_dict[city_name] = city_graph
    return city_graph_dict
コード例 #19
0
    def __init__(self,
                 tracking_dataset_dir,
                 dataset_name=None,
                 argoverse_map=None,
                 argoverse_loader=None,
                 save_imgs=False):
        logger = logging.getLogger()
        logger.setLevel(logging.CRITICAL)

        self.dataset_dir = tracking_dataset_dir
        self.am = ArgoverseMap() if argoverse_map is None else argoverse_map
        self.argoverse_loader = ArgoverseTrackingLoader(
            tracking_dataset_dir
        ) if argoverse_loader is None else argoverse_loader
        self.dataset_prefix_name = dataset_name

        self.objects_from_to = self._get_objects_from_to()
        self.valid_target_objects = self._get_valid_target_objects(
            save_imgs=save_imgs)
コード例 #20
0
 def __init__(self,
              root_dir='argoverse-data/forecasting_sample/data',
              train_seq_size=20,
              mode="train",
              save=False,
              load_saved=False,
              avm=None):
     super(Argoverse_Social_Centerline_Data,
           self).__init__(root_dir, train_seq_size)
     # self.agent_rel=agent_rel
     if avm is None:
         self.avm = ArgoverseMap()
     else:
         self.avm = avm
     self.map_features_utils_instance = MapFeaturesUtils()
     self.social_features_utils_instance = SocialFeaturesUtils()
     self.save = save
     self.mode = mode
     self.load_saved = load_saved
コード例 #21
0
 def get_point_in_polygon_score(self, lane_seq: List[int],
                                xy_seq: np.ndarray, city_name: str,
                                avm: ArgoverseMap) -> int:
     """Get the number of coordinates that lie insde the lane seq polygon.
     Args:
         lane_seq: Sequence of lane ids
         xy_seq: Trajectory coordinates
         city_name: City name (PITT/MIA)
         avm: Argoverse map_api instance
     Returns:
         point_in_polygon_score: Number of coordinates in the trajectory that lie within the lane sequence
     """
     lane_seq_polygon = cascaded_union([
         Polygon(avm.get_lane_segment_polygon(lane, city_name)).buffer(0)
         for lane in lane_seq
     ])
     point_in_polygon_score = 0
     for xy in xy_seq:
         point_in_polygon_score += lane_seq_polygon.contains(Point(xy))
     return point_in_polygon_score
コード例 #22
0
def test_filter_objs_to_roi():
    """ Use the map to filter out an object that lies outside the ROI in a parking lot """
    avm = ArgoverseMap()

    # should be outside of ROI
    outside_obj = {
        "center": {"x": -14.102872067388489, "y": 19.466695178746022, "z": 0.11740010190455852},
        "rotation": {"x": 0.0, "y": 0.0, "z": -0.038991328555453404, "w": 0.9992395490058831},
        "length": 4.56126567460171,
        "width": 1.9370055686754908,
        "height": 1.5820081349372281,
        "track_label_uuid": "03a321bf955a4d7781682913884abf06",
        "timestamp": 315970611820366000,
        "label_class": "VEHICLE",
    }

    # should be inside the ROI
    inside_obj = {
        "center": {"x": -20.727430239506702, "y": 3.4488006757501353, "z": 0.4036619561689685},
        "rotation": {"x": 0.0, "y": 0.0, "z": 0.0013102003738908123, "w": 0.9999991416871218},
        "length": 4.507580779458834,
        "width": 1.9243189627993598,
        "height": 1.629934978730058,
        "track_label_uuid": "bb0f40e4f68043e285d64a839f2f092c",
        "timestamp": 315970611820366000,
        "label_class": "VEHICLE",
    }

    log_city_name = "PIT"
    lidar_ts = 315970611820366000
    dataset_dir = TEST_DATA_LOC / "roi_based_test"
    log_id = "21e37598-52d4-345c-8ef9-03ae19615d3d"
    city_SE3_egovehicle = get_city_SE3_egovehicle_at_sensor_t(lidar_ts, dataset_dir, log_id)

    dts = np.array([json_label_dict_to_obj_record(item) for item in [outside_obj, inside_obj]])
    dts_filtered = filter_objs_to_roi(dts, avm, city_SE3_egovehicle, log_city_name)

    assert dts_filtered.size == 1
    assert dts_filtered.dtype == "O"  # array of objects
    assert isinstance(dts_filtered, np.ndarray)
    assert dts_filtered[0].track_id == "bb0f40e4f68043e285d64a839f2f092c"
コード例 #23
0
    def __init__(self,
                 file_path: str,
                 shuffle: bool = True,
                 random_rotation: bool = False,
                 max_car_num: int = 50,
                 freq: int = 10,
                 use_interpolate: bool = False,
                 use_lane: bool = False,
                 use_mask: bool = True):
        if not os.path.exists(file_path):
            raise Exception("Path does not exist.")

        self.afl = ArgoverseForecastingLoader(file_path)
        self.shuffle = shuffle
        self.random_rotation = random_rotation
        self.max_car_num = max_car_num
        self.freq = freq
        self.use_interpolate = use_interpolate
        self.am = ArgoverseMap()
        self.use_mask = use_mask
        self.file_path = file_path
コード例 #24
0
def save_all_to_pickle():
    datasets = ["train1", "train2", "train3", "train4"]
    final_dict = {}
    for dataset in datasets:
        tracking_dataset_dir = '/media/bartosz/hdd1TB/workspace_hdd/datasets/argodataset/argoverse-tracking/' + dataset
        ###################
        am = ArgoverseMap()
        argoverse_loader = ArgoverseTrackingLoader(tracking_dataset_dir)
        ###################
        argoverse = Argoverse(tracking_dataset_dir=tracking_dataset_dir,
                              dataset_name=dataset,
                              argoverse_map=am,
                              argoverse_loader=argoverse_loader)
        final_dict.update(argoverse.valid_target_objects)
        print("Processed {}".format(dataset))

    f = "/media/bartosz/hdd1TB/workspace_hdd/SS-LSTM/data/argoverse/train1234_48x48.pickle"
    pickle_out = open(f, "wb")
    pickle.dump(final_dict, pickle_out, protocol=2)
    pickle_out.close()
    print("Saved to pickle {}".format(f))
コード例 #25
0
 def __init__(self, root, train=True, test=False):
     '''
     根据路径获得数据,并根据训练、验证、测试划分数据
     train_data 和 test_data路径分开
     '''
     self.test = test
     self.train = train
     self.afl = ArgoverseForecastingLoader(root)
     self.avm = ArgoverseMap()
     root_dir = Path(root)
     r = [(root_dir / x).absolute() for x in os.listdir(root_dir)]
     n = len(r)
     if self.test == True:
         self.start = 0
         self.end = n
     elif self.train:
         self.start = 0
         self.end = int(0.7 * n)
     else:
         self.start = int(0.7 * n) + 1
         self.end = n
コード例 #26
0
    def __init__(self,
                 data_dict: Dict[str, Any],
                 args: Any,
                 mode: str,
                 base_dir="/work/vita/sadegh/argo/argoverse-api/",
                 use_history=True,
                 use_agents=True,
                 use_scene=True):
        """Initialize the Dataset.
        Args:
            data_dict: Dict containing all the data
            args: Arguments passed to the baseline code
            mode: train/val/test mode
        """
        self.data_dict = data_dict
        self.args = args
        self.mode = mode
        self.use_history = use_history
        self.use_agents = use_agents
        self.use_scene = use_scene
        # Get input
        self.input_data = data_dict["{}_input".format(mode)]
        if mode != "test":
            self.output_data = data_dict["{}_output".format(mode)]
        self.data_size = self.input_data.shape[0]

        # Get helpers
        self.helpers = self.get_helpers()
        self.helpers = list(zip(*self.helpers))

        middle_dir = mode if mode != "test" else "test_obs"
        self.root_dir = base_dir + middle_dir + "/data"

        ##set root_dir to the correct path to your dataset folder
        self.afl = ArgoverseForecastingLoader(self.root_dir)

        self.avm = ArgoverseMap()
        self.mf = MapFeaturesUtils()
コード例 #27
0
def verify_point_in_polygon_for_lanes():
    """
        """
    avm = ArgoverseMap()

    # ref_query_x = 422.
    # ref_query_y = 1005.

    ref_query_x = -662
    ref_query_y = 2817

    city_name = "MIA"
    for trial_idx in range(10):
        query_x = ref_query_x + (np.random.rand() - 0.5) * 10
        query_y = ref_query_y + (np.random.rand() - 0.5) * 10

        fig = plt.figure(figsize=(22.5, 8))
        ax = fig.add_subplot(111)
        ax.scatter([query_x], [query_y], 100, color="k", marker=".")

        occupied_lane_ids = avm.get_lane_segments_containing_xy(
            query_x, query_y, city_name)
        for occupied_lane_id in occupied_lane_ids:
            halluc_lane_polygon = avm.get_lane_segment_polygon(
                occupied_lane_id, city_name)
            plot_lane_segment_patch(halluc_lane_polygon,
                                    ax,
                                    color="y",
                                    alpha=0.3)

        nearby_lane_ids = avm.get_lane_ids_in_xy_bbox(query_x, query_y,
                                                      city_name)
        nearby_lane_ids = set(nearby_lane_ids) - set(occupied_lane_ids)
        for nearby_lane_id in nearby_lane_ids:
            halluc_lane_polygon = avm.get_lane_segment_polygon(
                nearby_lane_id, city_name)
            plot_lane_segment_patch(halluc_lane_polygon,
                                    ax,
                                    color="r",
                                    alpha=0.3)

        ax.axis("equal")
        plt.show()
        plt.close("all")
コード例 #28
0
ファイル: train.py プロジェクト: nabeelhthussain/ECCO
def evaluation():
    am = ArgoverseMap()

    val_dataset = read_pkl_data(val_path,
                                batch_size=args.val_batch_size,
                                shuffle=False,
                                repeat=False)

    trained_model = torch.load(model_name + '.pth')
    trained_model.eval()

    with torch.no_grad():
        valid_total_loss, valid_metrics = evaluate(
            trained_model,
            val_dataset,
            train_window=args.train_window,
            max_iter=len(val_dataset),
            device=device,
            start_iter=args.val_batches,
            use_lane=args.use_lane,
            batch_size=args.val_batch_size)

    with open('results/{}_predictions.pickle'.format(model_name), 'wb') as f:
        pickle.dump(valid_metrics, f)
コード例 #29
0
ファイル: utils.py プロジェクト: bhyang/argoverse-api
def filter_objs_to_roi(
    instances: np.ndarray, avm: ArgoverseMap, city_SE3_egovehicle: SE3, city_name: str
) -> np.ndarray:
    """Filter objects to the region of interest (5 meter dilation of driveable area).

    We ignore instances outside of region of interest (ROI) during evaluation.

    Args:
        instances: Numpy array of shape (N,) with ObjectLabelRecord entries
        avm: Argoverse map object
        city_SE3_egovehicle: pose of egovehicle within city map at time of sweep
        city_name: name of city where log was captured

    Returns:
        instances_roi: objects with any of 4 cuboid corners located within ROI
    """
    # for each cuboid, get its 4 corners in the egovehicle frame
    corners_egoframe = np.vstack([dt.as_2d_bbox() for dt in instances])
    corners_cityframe = city_SE3_egovehicle.transform_point_cloud(corners_egoframe)
    corner_within_roi = avm.get_raster_layer_points_boolean(corners_cityframe, city_name, "roi")
    # check for each cuboid if any of its 4 corners lies within the ROI
    is_within_roi = corner_within_roi.reshape(-1, 4).any(axis=1)
    instances_roi = instances[is_within_roi]
    return instances_roi
コード例 #30
0
ファイル: utils.py プロジェクト: gupta-abhay/deep-prediction
def viz_predictions(
    input_: np.ndarray,
    output: np.ndarray,
    target: np.ndarray,
    centerlines: np.ndarray,
    city_names: np.ndarray,
    idx=None,
    show: bool = True,
) -> None:
    """Visualize predicted trjectories.

    Args:
        input_ (numpy array): Input Trajectory with shape (num_tracks x obs_len x 2)
        output (numpy array of list): Top-k predicted trajectories, each with shape (num_tracks x pred_len x 2)
        target (numpy array): Ground Truth Trajectory with shape (num_tracks x pred_len x 2)
        centerlines (numpy array of list of centerlines): Centerlines (Oracle/Top-k) for each trajectory
        city_names (numpy array): city names for each trajectory
        show (bool): if True, show

    """
    num_tracks = input_.shape[0]
    obs_len = input_.shape[1]
    pred_len = target.shape[1]

    plt.figure(0, figsize=(8, 7))
    avm = ArgoverseMap()
    for i in range(num_tracks):
        plt.plot(
            input_[i, :, 0],
            input_[i, :, 1],
            color="#ECA154",
            label="Observed",
            alpha=1,
            linewidth=3,
            zorder=15,
        )
        plt.plot(
            input_[i, -1, 0],
            input_[i, -1, 1],
            "o",
            color="#ECA154",
            label="Observed",
            alpha=1,
            linewidth=3,
            zorder=15,
            markersize=9,
        )
        plt.plot(
            target[i, :, 0],
            target[i, :, 1],
            color="#d33e4c",
            label="Target",
            alpha=1,
            linewidth=3,
            zorder=20,
        )
        plt.plot(
            target[i, -1, 0],
            target[i, -1, 1],
            "o",
            color="#d33e4c",
            label="Target",
            alpha=1,
            linewidth=3,
            zorder=20,
            markersize=9,
        )

        for j in range(len(centerlines[i])):
            plt.plot(
                centerlines[i][j][:, 0],
                centerlines[i][j][:, 1],
                "--",
                color="grey",
                alpha=1,
                linewidth=1,
                zorder=0,
            )

        for j in range(len(output[i])):
            plt.plot(
                output[i][j][:, 0],
                output[i][j][:, 1],
                color="#007672",
                label="Predicted",
                alpha=1,
                linewidth=3,
                zorder=15,
            )
            plt.plot(
                output[i][j][-1, 0],
                output[i][j][-1, 1],
                "o",
                color="#007672",
                label="Predicted",
                alpha=1,
                linewidth=3,
                zorder=15,
                markersize=9,
            )
            for k in range(pred_len):
                lane_ids = avm.get_lane_ids_in_xy_bbox(
                    output[i][j][k, 0],
                    output[i][j][k, 1],
                    city_names[i],
                    query_search_range_manhattan=2.5,
                )

        for j in range(obs_len):
            lane_ids = avm.get_lane_ids_in_xy_bbox(
                input_[i, j, 0],
                input_[i, j, 1],
                city_names[i],
                query_search_range_manhattan=2.5,
            )
            [avm.draw_lane(lane_id, city_names[i]) for lane_id in lane_ids]
        for j in range(pred_len):
            lane_ids = avm.get_lane_ids_in_xy_bbox(
                target[i, j, 0],
                target[i, j, 1],
                city_names[i],
                query_search_range_manhattan=2.5,
            )
            [avm.draw_lane(lane_id, city_names[i]) for lane_id in lane_ids]

        plt.axis("equal")
        plt.xticks([])
        plt.yticks([])
        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        if show:
            plt.show()