コード例 #1
0
def add_auxiliary_task_arguments(group: _ArgumentGroup) -> _ArgumentGroup:
    """Add arguments for auxiliary task."""
    group.add_argument(
        "--use-ctc-loss",
        type=strtobool,
        nargs="?",
        default=False,
        help="Whether to compute auxiliary CTC loss.",
    )
    group.add_argument(
        "--ctc-loss-weight",
        default=0.5,
        type=float,
        help="Weight of auxiliary CTC loss.",
    )
    group.add_argument(
        "--ctc-loss-dropout-rate",
        default=0.0,
        type=float,
        help="Dropout rate for auxiliary CTC.",
    )
    group.add_argument(
        "--use-lm-loss",
        type=strtobool,
        nargs="?",
        default=False,
        help="Whether to compute auxiliary LM loss (label smoothing).",
    )
    group.add_argument(
        "--lm-loss-weight",
        default=0.5,
        type=float,
        help="Weight of auxiliary LM loss.",
    )
    group.add_argument(
        "--lm-loss-smoothing-rate",
        default=0.0,
        type=float,
        help="Smoothing rate for LM loss. If > 0, label smoothing is enabled.",
    )
    group.add_argument(
        "--use-aux-transducer-loss",
        type=strtobool,
        nargs="?",
        default=False,
        help="Whether to compute auxiliary Transducer loss.",
    )
    group.add_argument(
        "--aux-transducer-loss-weight",
        default=0.2,
        type=float,
        help="Weight of auxiliary Transducer loss.",
    )
    group.add_argument(
        "--aux-transducer-loss-enc-output-layers",
        default=None,
        type=ast.literal_eval,
        help="List of intermediate encoder layers for auxiliary "
        "transducer loss computation.",
    )
    group.add_argument(
        "--aux-transducer-loss-mlp-dim",
        default=320,
        type=int,
        help=
        "Multilayer perceptron hidden dimension for auxiliary Transducer loss.",
    )
    group.add_argument(
        "--aux-transducer-loss-mlp-dropout-rate",
        default=0.0,
        type=float,
        help=
        "Multilayer perceptron dropout rate for auxiliary Transducer loss.",
    )
    group.add_argument(
        "--use-symm-kl-div-loss",
        type=strtobool,
        nargs="?",
        default=False,
        help="Whether to compute symmetric KL divergence loss.",
    )
    group.add_argument(
        "--symm-kl-div-loss-weight",
        default=0.2,
        type=float,
        help="Weight of symmetric KL divergence loss.",
    )

    return group
コード例 #2
0
ファイル: imc_poison.py プロジェクト: THUYimingLi/trojanzoo
    def add_argument(cls, group: argparse._ArgumentGroup):
        super().add_argument(group)
        group.add_argument('--pgd_alpha', dest='pgd_alpha', type=float)
        group.add_argument('--pgd_epsilon', dest='pgd_epsilon', type=float)
        group.add_argument('--pgd_iteration', dest='pgd_iteration', type=int)
        group.add_argument('--stop_conf', dest='stop_conf', type=float)

        group.add_argument('--magnet', dest='magnet', action='store_true')
        group.add_argument('--randomized_smooth',
                           dest='randomized_smooth',
                           action='store_true')
        group.add_argument('--curvature',
                           dest='curvature',
                           action='store_true')
コード例 #3
0
ファイル: image_transform.py プロジェクト: hkunzhe/trojanzoo
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--transform_mode', dest='transform_mode', type=str,
                        help='Image Transform Mode, defaults to "recompress".')
     group.add_argument('--resize_ratio', dest='resize_ratio', type=float,
                        help='Image Resize Ratio for Recompress, defaults to 0.95.')
コード例 #4
0
ファイル: term_study.py プロジェクト: LiuBoyang93/trojanzoo
    def add_argument(cls, group: argparse._ArgumentGroup):
        super().add_argument(group)
        group.add_argument('--term')

        group.add_argument('--inner_iter', type=int)
        group.add_argument('--inner_lr', type=float)

        group.add_argument(
            '--class_sample_num',
            type=int,
            help='the number of sampled images per class, defaults to 100')
        group.add_argument(
            '--mse_weight',
            type=float,
            help='the weight of mse loss during retraining, defaults to 100')
        group.add_argument(
            '--preprocess_layer',
            help=
            'the chosen feature layer patched by trigger, defaults to \'features\''
        )
        group.add_argument('--preprocess_epoch',
                           type=int,
                           help='preprocess optimization epoch')
        group.add_argument('--preprocess_lr',
                           type=float,
                           help='preprocess learning rate')
        return group
コード例 #5
0
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--sample_ratio',
                        type=float,
                        help='sample ratio from the full training data')
     group.add_argument('--noise_dim', type=int, help='GAN noise dimension')
     group.add_argument('--remask_epoch',
                        type=int,
                        help='Remask optimizing epoch')
     group.add_argument('--remask_lr',
                        type=float,
                        help='Remask optimizing learning rate')
     group.add_argument('--gamma_1',
                        type=float,
                        help='control effect of GAN loss')
     group.add_argument('--gamma_2',
                        type=float,
                        help='control effect of perturbation loss')
     return group
コード例 #6
0
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--target_platform')
     return group
コード例 #7
0
 def add_argument(group: argparse._ArgumentGroup):
     group.add_argument(
         '--edge_color',
         dest='edge_color',
         help='edge color in watermark image, defaults to \'auto\'.')
     group.add_argument(
         '--mark_path',
         dest='mark_path',
         help=
         'edge color in watermark image, defaults to trojanzoo/data/mark/apple_white.png.'
     )
     group.add_argument('--mark_alpha',
                        dest='mark_alpha',
                        type=float,
                        help='mark transparency, defaults to 0.0.')
     group.add_argument('--mark_height',
                        dest='mark_height',
                        type=int,
                        help='mark height, defaults to 3.')
     group.add_argument('--mark_width',
                        dest='mark_width',
                        type=int,
                        help='mark width, defaults to 3.')
     group.add_argument('--height_offset',
                        dest='height_offset',
                        type=int,
                        help='height offset, defaults to 0')
     group.add_argument('--width_offset',
                        dest='width_offset',
                        type=int,
                        help='width offset, defaults to 0')
     group.add_argument('--random_pos',
                        dest='random_pos',
                        action='store_true',
                        help='Random offset Location for add_mark.')
     group.add_argument('--random_init',
                        dest='random_init',
                        action='store_true',
                        help='random values for mark pixel.')
     group.add_argument('--mark_distributed',
                        dest='mark_distributed',
                        action='store_true',
                        help='Distributed Mark.')
     return group
コード例 #8
0
ファイル: trojannet.py プロジェクト: ndrsn0208/trojanzoo
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--select_point',
                        dest='select_point',
                        type=int,
                        help='the number of select_point, defaults to 2')
コード例 #9
0
ファイル: imageset.py プロジェクト: ain-soph/trojanzoo
    def add_argument(
            cls, group: argparse._ArgumentGroup) -> argparse._ArgumentGroup:
        r"""Add image dataset arguments to argument parser group.
        View source to see specific arguments.

        Note:
            This is the implementation of adding arguments.
            The concrete dataset class may override this method to add more arguments.
            For users, please use :func:`add_argument()` instead, which is more user-friendly.

        See Also:
            :meth:`trojanzoo.datasets.Dataset.add_argument()`
        """
        super().add_argument(group)
        group.add_argument(
            '--dataset_normalize',
            dest='normalize',
            action='store_true',
            help='use transforms.Normalize in dataset transform. '
            '(It\'s used in model as the first layer by default.)')
        group.add_argument('--transform',
                           choices=[None, 'none', 'bit', 'pytorch'])
        group.add_argument('--auto_augment',
                           action='store_true',
                           help='use auto augment')
        group.add_argument('--mixup', action='store_true', help='use mixup')
        group.add_argument('--mixup_alpha',
                           type=float,
                           help='mixup alpha (default: 0.0)')
        group.add_argument('--cutmix', action='store_true', help='use cutmix')
        group.add_argument('--cutmix_alpha',
                           type=float,
                           help='cutmix alpha (default: 0.0)')
        group.add_argument('--cutout', action='store_true', help='use cutout')
        group.add_argument('--cutout_length', type=int, help='cutout length')
        return group
コード例 #10
0
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--mix_image_num', type=int, help='the number of sampled image')
     group.add_argument('--clean_image_ratio', type=float, help='the ratio of clean image')
     group.add_argument('--retrain_epoch', type=int, help='the epoch of retraining the model')
     group.add_argument('--nb_clusters', type=int, help='')
     group.add_argument('--clustering_method', type=str, help='the amount of clusters')
     group.add_argument('--nb_dims', type=int,
                        help='the dimension set in the process of reduceing the dimensionality of data')
     group.add_argument('--reduce_method', type=str, help=' the method for reduing the dimensionality of data')
     group.add_argument('--cluster_analysis', type=str, help='the method chosen to analyze whether cluster is the poison cluster, '
                        'including size, distance, relative-size, silhouette-scores')
     return group
コード例 #11
0
ファイル: models.py プロジェクト: hkunzhe/trojanzoo
 def add_argument(group: argparse._ArgumentGroup):
     group.add_argument('-m', '--model', dest='model_name',
                        help='model name, defaults to config[model][default_model]')
     group.add_argument('--suffix', dest='suffix',
                        help='model name suffix, e.g. _adv_train')
     group.add_argument('--pretrain', dest='pretrain', action='store_true',
                        help='load pretrained weights, defaults to False')
     group.add_argument('--official', dest='official', action='store_true',
                        help='load official weights, defaults to False')
     group.add_argument('--model_dir', dest='model_dir',
                        help='directory to contain pretrained models')
     group.add_argument('--randomized_smooth', dest='randomized_smooth', action='store_true',
                        help='whether to use randomized smoothing, defaults to False')
     group.add_argument('--rs_sigma', dest='rs_sigma', type=float,
                        help='randomized smoothing sampling std, defaults to 0.01')
     group.add_argument('--rs_n', dest='rs_n', type=int,
                        help='randomized smoothing sampling number, defaults to 100')
     return group
コード例 #12
0
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--num_classes', type=int, help='number of classes')
     return group
コード例 #13
0
    def add_argument(cls, group: argparse._ArgumentGroup):
        super().add_argument(group)
        group.add_argument(
            '--alpha',
            dest='alpha',
            type=float,
            help='PGD learning rate per step, defaults to 3.0/255')
        group.add_argument(
            '--epsilon',
            dest='epsilon',
            type=float,
            help='Projection norm constraint, defaults to 8.0/255')
        group.add_argument('--iteration',
                           dest='iteration',
                           type=int,
                           help='Attack Iteration, defaults to 20')
        group.add_argument('--stop_threshold',
                           dest='stop_threshold',
                           type=float,
                           help='early stop confidence, defaults to None')
        group.add_argument(
            '--target_idx',
            dest='target_idx',
            type=int,
            help='Target label order in original classification, defaults to 1 '
            '(0 for untargeted attack, 1 for most possible class, -1 for most unpossible class)'
        )

        group.add_argument(
            '--grad_method',
            dest='grad_method',
            help='gradient estimation method, defaults to \'white\'')
        group.add_argument(
            '--query_num',
            dest='query_num',
            type=int,
            help=
            'query numbers for black box gradient estimation, defaults to 100.'
        )
        group.add_argument(
            '--sigma',
            dest='sigma',
            type=float,
            help=
            'gaussian sampling std for black box gradient estimation, defaults to 1e-3'
        )
コード例 #14
0
def add_custom_encoder_arguments(group: _ArgumentGroup) -> _ArgumentGroup:
    """Define arguments for Custom encoder."""
    group.add_argument(
        "--enc-block-arch",
        type=eval,
        action="append",
        default=None,
        help="Encoder architecture definition by blocks",
    )
    group.add_argument(
        "--enc-block-repeat",
        default=1,
        type=int,
        help="Repeat N times the provided encoder blocks if N > 1",
    )
    group.add_argument(
        "--custom-enc-input-layer",
        type=str,
        default="conv2d",
        choices=["conv2d", "vgg2l", "linear", "embed"],
        help="Custom encoder input layer type",
    )
    group.add_argument(
        "--custom-enc-input-dropout-rate",
        type=float,
        default=0.0,
        help="Dropout rate of custom encoder input layer",
    )
    group.add_argument(
        "--custom-enc-input-pos-enc-dropout-rate",
        type=float,
        default=0.0,
        help=
        "Dropout rate of positional encoding in custom encoder input layer",
    )
    group.add_argument(
        "--custom-enc-positional-encoding-type",
        type=str,
        default="abs_pos",
        choices=["abs_pos", "scaled_abs_pos", "rel_pos"],
        help="Custom encoder positional encoding layer type",
    )
    group.add_argument(
        "--custom-enc-self-attn-type",
        type=str,
        default="self_attn",
        choices=["self_attn", "rel_self_attn"],
        help="Custom encoder self-attention type",
    )
    group.add_argument(
        "--custom-enc-pw-activation-type",
        type=str,
        default="relu",
        choices=["relu", "hardtanh", "selu", "swish"],
        help="Custom encoder pointwise activation type",
    )
    group.add_argument(
        "--custom-enc-conv-mod-activation-type",
        type=str,
        default="swish",
        choices=["relu", "hardtanh", "selu", "swish"],
        help="Custom encoder convolutional module activation type",
    )

    return group
コード例 #15
0
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--data_format', dest='data_format', type=str,
                        help='folder or zip. (zip is using ZIP_STORED)')
コード例 #16
0
ファイル: imagemodel.py プロジェクト: LiuBoyang93/trojanzoo
    def add_argument(cls, group: argparse._ArgumentGroup):
        super().add_argument(group)
        group.add_argument('--adv_train',
                           action='store_true',
                           help='enable adversarial training.')
        group.add_argument(
            '--adv_train_iter',
            type=int,
            help='adversarial training PGD iteration, defaults to 7.')
        group.add_argument(
            '--adv_train_alpha',
            type=float,
            help='adversarial training PGD alpha, defaults to 2/255.')
        group.add_argument(
            '--adv_train_eps',
            type=float,
            help='adversarial training PGD eps, defaults to 8/255.')
        group.add_argument(
            '--adv_train_valid_eps',
            type=float,
            help='adversarial training PGD eps, defaults to 8/255.')

        group.add_argument(
            '--sgm',
            action='store_true',
            help='whether to use sgm gradient, defaults to False')
        group.add_argument('--sgm_gamma',
                           type=float,
                           help='sgm gamma, defaults to 1.0')
        return group
コード例 #17
0
    def add_argument(cls, group: argparse._ArgumentGroup):
        r"""Add image model arguments to argument parser group.
        View source to see specific arguments.

        Note:
            This is the implementation of adding arguments.
            The concrete model class may override this method to add more arguments.
            For users, please use :func:`add_argument()` instead, which is more user-friendly.

        See Also:
            :meth:`trojanzoo.models.Model.add_argument()`
        """
        super().add_argument(group)
        group.add_argument('--adv_train', choices=[None, 'pgd', 'free', 'trades'],
                           help='adversarial training (default: None)')
        group.add_argument('--adv_train_random_init', action='store_true')
        group.add_argument('--adv_train_iter', type=int,
                           help='adversarial training PGD iteration (default: 7).')
        group.add_argument('--adv_train_alpha', type=float,
                           help='adversarial training PGD alpha (default: 2/255).')
        group.add_argument('--adv_train_eps', type=float,
                           help='adversarial training PGD eps (default: 8/255).')
        group.add_argument('--adv_train_eval_iter', type=int)
        group.add_argument('--adv_train_eval_alpha', type=float)
        group.add_argument('--adv_train_eval_eps', type=float)
        group.add_argument('--adv_train_trades_beta', type=float,
                           help='regularization, i.e., 1/lambda in TRADES '
                           '(default: 6.0)')

        group.add_argument('--norm_layer', choices=['bn', 'gn'], default='bn')
        group.add_argument('--sgm', action='store_true',
                           help='whether to use sgm gradient (default: False)')
        group.add_argument('--sgm_gamma', type=float,
                           help='sgm gamma (default: 1.0)')
        return group
コード例 #18
0
ファイル: trojannn.py プロジェクト: ndrsn0208/trojanzoo
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--preprocess_layer', dest='preprocess_layer', type=str,
                        help='the chosen feature layer patched by trigger where rare neuron activation is maxmized, defaults to ``flatten``')
     group.add_argument('--threshold', dest='threshold', type=float,
                        help='Trojan Net Threshold, defaults to 5')
     group.add_argument('--target_value', dest='target_value', type=float,
                        help='Trojan Net Target_Value, defaults to 10')
     group.add_argument('--neuron_lr', dest='neuron_lr', type=float,
                        help='Trojan Net learning rate in neuron preprocessing, defaults to 0.015')
     group.add_argument('--neuron_epoch', dest='neuron_epoch', type=int,
                        help='Trojan Net epoch in neuron preprocessing, defaults to 20')
     group.add_argument('--neuron_num', dest='neuron_num', type=int,
                        help='Trojan Net neuron numbers in neuron preprocessing, defaults to 2')
コード例 #19
0
ファイル: clean_label.py プロジェクト: C0ldstudy/trojanzoo
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument(
         '--poison_generation_method',
         dest='poison_generation_method',
         type=str,
         help=
         'the chosen method to generate poisoned sample, defaults to config[clean_label][poison_generation_method]=pgd'
     )
     group.add_argument(
         '--tau',
         dest='tau',
         type=float,
         help=
         'the interpolation constant used to balance source imgs and target imgs, defaults to config[clean_label][tau]=0.2'
     )
     group.add_argument(
         '--epsilon',
         dest='epsilon',
         type=float,
         help=
         'the perturbation bound in input space, defaults to config[clean_label][epsilon]=0.1, 300/(3*32*32)'
     )
     group.add_argument(
         '--noise_dim',
         dest='noise_dim',
         type=int,
         help=
         'the dimension of the input in the generator, defaults to config[clean_label][noise_dim]=100'
     )
     group.add_argument(
         '--train_gan',
         dest='train_gan',
         action='store_true',
         help='whether train the GAN if it already exists, defaults to False'
     )
     group.add_argument(
         '--generator_iters',
         dest='generator_iters',
         type=int,
         help=
         ' the epoch for training the generator, defaults to config[clean_label][generator_iters]=1000'
     )
     group.add_argument(
         '--critic_iter',
         dest='critic_iter',
         type=int,
         help=
         ' the critic iterations per generator training iteration, defaults to config[clean_label][critic_iter]=5'
     )
コード例 #20
0
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--poison_generation_method', choices=['pgd', 'gan'],
                        help='the chosen method to generate poisoned sample '
                        '(default: "pgd")')
     group.add_argument('--pgd_alpha', type=float)
     group.add_argument('--pgd_eps', type=float)
     group.add_argument('--pgd_iter', type=int)
     group.add_argument('--tau', type=float,
                        help='the interpolation constant used to balance source imgs and target imgs, '
                        'defaults to 0.2')
     group.add_argument('--noise_dim', type=int,
                        help='the dimension of the input in the generator, '
                        'defaults to config[clean_label][noise_dim]=100')
     group.add_argument('--train_gan', action='store_true',
                        help='whether train the GAN if it already exists, defaults to False')
     group.add_argument('--generator_iters', type=int,
                        help='epochs for training the generator, defaults to 1000')
     group.add_argument('--critic_iter', type=int,
                        help='critic iterations per generator training iteration '
                        '(default: 5)')
     return group
コード例 #21
0
ファイル: darts.py プロジェクト: ain-soph/trojanzoo
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--supernet',
                        action='store_true',
                        help='whether to use supernet')
     group.add_argument('--model_arch',
                        help='genotype name (default: "darts")')
     group.add_argument('--layers',
                        type=int,
                        help='total number of layers (default: 20)')
     group.add_argument('--init_channels',
                        type=int,
                        help='out_channel of stem conv layer (default: 36)')
     group.add_argument('--dropout_p',
                        type=float,
                        help='dropout probability (default: 0.2)')
     group.add_argument('--auxiliary',
                        action='store_true',
                        help='whether to use auxiliary classifier')
     group.add_argument(
         '--auxiliary_weight',
         type=float,
         help='loss weight of auxiliary classifier (default: 0.4)')
     group.add_argument(
         '--arch_search',
         action='store_true',
         help='whether to search supernet architecture weight parameters')
     group.add_argument(
         '--use_full_train_set',
         action='store_true',
         help='whether to use full training data during architecture search'
     )
     group.add_argument(
         '--arch_lr',
         type=float,
         help='learning rate for architecture optimizer (default: 3e-4)')
     group.add_argument(
         '--arch_weight_decay',
         type=float,
         help='weight decay for architecture optimizer (default: 1e-3)')
     group.add_argument(
         '--arch_unrolled',
         action='store_true',
         default=False,
         help='whether to use one-step unrolled validation loss (darts-v2)')
     return group
コード例 #22
0
ファイル: imc_adaptive.py プロジェクト: THUYimingLi/trojanzoo
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--abs_weight', dest='abs_weight', type=float)
     group.add_argument('--strip_percent', dest='strip_percent', type=float)
コード例 #23
0
ファイル: datasets.py プロジェクト: HNoodles/trojanzoo
 def add_argument(group: argparse._ArgumentGroup):
     group.add_argument('-d',
                        '--dataset',
                        dest='dataset_name',
                        type=str,
                        help='dataset name (lowercase).')
     group.add_argument(
         '--batch_size',
         dest='batch_size',
         type=int,
         help='batch size (negative number means batch_size for each gpu).')
     group.add_argument('--valid_batch_size',
                        dest='valid_batch_size',
                        type=int,
                        help='valid batch size.')
     group.add_argument('--test_batch_size',
                        dest='test_batch_size',
                        type=int,
                        help='test batch size.')
     group.add_argument(
         '--num_workers',
         dest='num_workers',
         type=int,
         help=
         'num_workers passed to torch.utils.data.DataLoader for training set, defaults to 4.'
     )
     group.add_argument(
         '--download',
         dest='download',
         action='store_true',
         help='download dataset if not exist by calling dataset.initialize()'
     )
     group.add_argument('--data_dir',
                        dest='data_dir',
                        help='directory to contain datasets')
     return group
コード例 #24
0
ファイル: test_argparse.py プロジェクト: chateval/Mephisto
 def add_args_to_group(cls, group: ArgumentGroup):
     group.add_argument("--hidden-default-argument",
                        dest="hidden_default_argument",
                        default=3)
     group.add_argument("--hidden-argument", dest="hidden_argument")
コード例 #25
0
 def add_to_group(self, group: argparse._ArgumentGroup) -> None:
     group.add_argument(*self.args, **self.kwargs)
コード例 #26
0
ファイル: pgd.py プロジェクト: LiuBoyang93/trojanzoo
    def add_argument(cls, group: argparse._ArgumentGroup):
        super().add_argument(group)
        group.add_argument(
            '--pgd_alpha',
            type=float,
            help='PGD learning rate per step, defaults to 2.0/255')
        group.add_argument(
            '--pgd_eps',
            type=float,
            help='Projection norm constraint, defaults to 8.0/255')
        group.add_argument('--iteration',
                           type=int,
                           help='Attack Iteration, defaults to 7')
        group.add_argument('--stop_threshold',
                           type=float,
                           help='early stop confidence, defaults to 0.99')
        group.add_argument(
            '--target_idx',
            type=int,
            help='Target label order in original classification, defaults to -1 '
            '(0 for untargeted attack, 1 for most possible class, -1 for most unpossible class)'
        )
        group.add_argument(
            '--test_num',
            type=int,
            help='total number of test examples for PGD, defaults to 1000.')
        group.add_argument(
            '--num_init',
            type=int,
            help=
            'number of random init for PGD, defaults to 0 (without random initialization).'
        )

        group.add_argument(
            '--grad_method',
            help='gradient estimation method, defaults to \'white\'')
        group.add_argument(
            '--query_num',
            type=int,
            help=
            'query numbers for black box gradient estimation, defaults to 100.'
        )
        group.add_argument(
            '--sigma',
            type=float,
            help=
            'gaussian sampling std for black box gradient estimation, defaults to 1e-3'
        )
        return group
コード例 #27
0
ファイル: advmind.py プロジェクト: ndrsn0208/trojanzoo
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--attack_adapt', dest='attack_adapt', action='store_true',
                        help='Adaptive attack to add fake queries.')
     group.add_argument('--fake_percent', dest='fake_percent', type=float,
                        help='fake query percentage.')
     group.add_argument('--dist', dest='dist', type=float,
                        help='fake query noise std.')
     group.add_argument('--defend_adapt', dest='defend_adapt', action='store_true',
                        help='Robust location M-estimator.')
     group.add_argument('--active', dest='active', action='store_true',
                        help='Proactive solicitation.')
     group.add_argument('--active_percent', dest='active_percent', type=float,
                        help='Active gradient weight.')
コード例 #28
0
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--pgd_alpha', type=float)
     group.add_argument('--pgd_eps', type=float)
     group.add_argument('--pgd_iter', type=int)
     return group
コード例 #29
0
ファイル: imc.py プロジェクト: THUYimingLi/trojanzoo
 def add_argument(cls, group: argparse._ArgumentGroup):
     super().add_argument(group)
     group.add_argument('--inner_iter', dest='inner_iter', type=int)
     group.add_argument('--inner_lr', dest='inner_lr', type=float)
コード例 #30
0
def add_custom_training_arguments(group: _ArgumentGroup) -> _ArgumentGroup:
    """Define arguments for training with Custom architecture."""
    group.add_argument(
        "--optimizer-warmup-steps",
        default=25000,
        type=int,
        help="Optimizer warmup steps",
    )
    group.add_argument(
        "--noam-lr",
        default=10.0,
        type=float,
        help="Initial value of learning rate",
    )
    group.add_argument(
        "--noam-adim",
        default=0,
        type=int,
        help="Most dominant attention dimension for scheduler.",
    )
    group.add_argument(
        "--transformer-warmup-steps",
        type=int,
        help="Optimizer warmup steps. The parameter is deprecated, "
        "please use --optimizer-warmup-steps instead.",
        dest="optimizer_warmup_steps",
    )
    group.add_argument(
        "--transformer-lr",
        type=float,
        help="Initial value of learning rate. The parameter is deprecated, "
        "please use --noam-lr instead.",
        dest="noam_lr",
    )
    group.add_argument(
        "--adim",
        type=int,
        help="Most dominant attention dimension for scheduler. "
        "The parameter is deprecated, please use --noam-adim instead.",
        dest="noam_adim",
    )

    return group