コード例 #1
0
        trainer = Trainer(args, args_subset, args_dict_update)
        trainer.sample(exp_num)

    ## SAMPLE
    ## -----------------------------

    ## Sample Prep.
    del trainer
    gc.collect()

    print('Loading the best model and running the sample loop')
    args_dict_update = {
        'render': args.render,
        'window_hop': 0,
        'sample_all_styles': 0
    }

    ## Sample
    trainer = Trainer(args, args_subset, args_dict_update)
    trainer.sample(exp_num)

    ## Finish
    trainer.finish_exp()

    ## Print Experiment No.
    print('\nExperiment Number: {}'.format(args.exp))


if __name__ == '__main__':
    argparseNloop(loop)
コード例 #2
0
    ## Sample
    print('Loading the best model and running the sample loop')
    args.__dict__.update({
        'load':
        book.name(book.weights_ext[0], book.weights_ext[1], args.save_dir)
    })
    sample(args, exp_num, data)

    ## Render (on a cpu only node)
    # feats_kind_dict = {'rifke':'fke'}
    # print('Rendering')
    # render = Slurm('render', slurm_kwargs={'partition':'cpu_long', 'time':'10-00:00', 'n':10})
    # python_cmd = ['source activate torch',
    #               'python render.py -dataset {} -load {} -feats_kind {} -render_list {}'.format(
    #                 args.dataset,
    #                 args.load,
    #                 feats_kind_dict[args.feats_kind],
    #                 args.render_list)]
    # render.run('\n'.join(python_cmd))

    ## Render new sentences
    print('Rendering New Sentences')
    render_new_sentences(args, exp_num, data)

    # End Log
    book._stop_log()


if __name__ == '__main__':
    argparseNloop(train)
コード例 #3
0
      kwargs_dict.update({'h1':'{}'.format(path2videos)})
    temp_filename = next(tempfile._get_candidate_names())
    get_html_snippet('grid.html', 'templates/{}.html'.format(temp_filename), kwargs_dict)
    file_list.append(temp_filename)
  kwargs_dict = {'filenames':['{}.html'.format(file) for file in file_list]}
  get_html_snippet('index.html', '{}.html'.format(temp_filename), kwargs_dict)

  temp_srcs = ['htmlUtils/app/templates/{}.html'.format(file) for file in file_list]
  src = 'htmlUtils/app/{}.html'.format(temp_filename)
  dest = os.path.join(path2videos, '{}.html'.format(outfile))
  shutil.move(src, dest)
  for temp_src in temp_srcs:
    os.remove(temp_src)

def makeHTMLfile_loop(args, exp_num):
  assert args.load, 'Load file must be provided'
  assert os.path.exists(args.load), 'Load file must exist'
  
  args_subset = ['exp', 'cpk', 'speaker', 'model']
  book = BookKeeper(args, args_subset, args_dict_update={'render':args.render},
                    tensorboard=args.tb)
  args = book.args

  dir_name = book.name.dir(args.save_dir)

  makeHTMLfile(dir_name, idxs=args.render, outfile='videos')
  makeHTMLfile(dir_name, idxs=4, outfile='videos_subset')

if __name__ == '__main__':
  argparseNloop(makeHTMLfile_loop)
コード例 #4
0
                     num_iter=500)

            loss = criterion(y_cap, y)
            for i_loss in internal_losses:
                loss += i_loss

            running_loss += loss.item() * batch_size
            running_count += batch_size

            if count >= 0 and args.debug:  ## debugging by overfitting
                break

        return running_loss / running_count

    train_loss = loop(model, data, train, pre, 'train')
    dev_loss = loop(model, data, dev, pre, 'dev')
    test_loss = loop(model, data, test, pre, 'test')

    ## update results but not save them
    book.update_res({'train': train_loss, 'dev': dev_loss, 'test': test_loss})

    ## print results
    book.print_res(0,
                   key_order=['train', 'dev', 'test'],
                   exp=exp_num,
                   lr=optim.param_groups[0]['lr'])


if __name__ == '__main__':
    argparseNloop(sample)
コード例 #5
0
ファイル: render.py プロジェクト: chahuja/mix-stage
                save_animation(y_animates,
                               intervals,
                               dir_name,
                               desc,
                               data,
                               start,
                               subname=subname1,
                               text=texts,
                               output_modalities=output_modality,
                               mask=mask)
                save_animation(y_animates_eval,
                               intervals,
                               dir_name,
                               desc,
                               data,
                               start,
                               subname=subname2,
                               text=texts,
                               output_modalities=output_modality,
                               mask=mask)

    ## render html
    if set(keypoints_dirnames) - {'keypoints', 'keypoints_style'}:
        makeHTMLfile(dir_name, args.render, 'videos')
        makeHTMLfile(dir_name, 4, 'videos_subset')


if __name__ == '__main__':
    argparseNloop(render)