Float( key="baggingTemperature", default=1, help="Defines the settings of the Bayesian bootstrap. ", ) ) @dc.param( String( key="evalMetric", default="MAE", help="""The metric used for overfitting detection and best model selection. MAE,MAPE,RMSE,Poisson,SMAPE,R2,MSLE,MedianAbsoluteError""", ) ) @dc.param(Bool(key="needTrain", default=True)) @dc.output(SklearnModel(key="outputModel")) def SPCatBoostRegressor(context): # 从 Context 中获取相关数据 args = context.args # 查看上一节点发送的 args.inputData1 数据 df = args.inputData featureColumns = args.featureColumns labelColumn = args.labelColumn features = df[featureColumns].values if len(featureColumns)>0 else df.values label = df[labelColumn].values iterations = args.iterations learningRate = args.learningRate
from suanpan.docker.arguments import Csv, String, Bool, ListOfString import pandas as pd import numpy as np from statsmodels.tsa.ar_model import ARResultsWrapper from statsmodels.tsa.statespace.sarimax import SARIMAXResultsWrapper from statsmodels.tsa.arima_model import ARMAResultsWrapper, ARIMAResultsWrapper from statsmodels.regression.linear_model import RegressionResultsWrapper from statsmodels.discrete.discrete_model import ( BinaryResultsWrapper, MultinomialResultsWrapper, ) from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.input(SklearnModel(key="inputModel")) @dc.column(ListOfString(key="featureColumns", default=["a", "b", "c", "d"])) @dc.column(String(key="predictColumn", default="prediction")) @dc.param(String(key="start", default="2000-11-30")) @dc.param(String(key="end", default="2001-05-31")) @dc.param(Bool(key="dynamic", default=True)) @dc.output(Csv(key="outputData")) def SPStatsPredict(context): args = context.args model = args.inputModel if isinstance( model, ( ARResultsWrapper, ARMAResultsWrapper,