def algo1Handler(): if request.method == 'POST': f = request.files['datafile'] f.save(secure_filename(f.filename)) arima(f.filename) return send_file("sent.xlsx", as_attachment=True)
def arguments_convey(self): # print("hello") self.circle = self.select_circle.currentText() self.sensor_list = [] for item in self.checkBox_list: if item.isChecked(): self.sensor_list.append(int( re.findall(r"\d+", item.text())[0])) # print(self.circle) # print(self.sensor_list) if (self.sensor_list == []): self.error_output2.clear() self.output_widget2.clear() self.show_message2("请先选择传感器") else: self.error_output2.clear() self.output_widget2.clear() self.show_message2("predicting...") ari = arima.arima() output, error, predict, available = ari.predict( self.sensor_list, int(self.circle[-1]), self.path) ari.draw_image(self.name, available, predict, int(self.circle[-1])) self.output_widget2.clear() self.show_message2(output) self.show_error2(error) self.output_figure2.setPixmap(QPixmap("./result_img/arima.png"))
def arimaTemp(filename): processTemp() predictions = [] r = pr.R(RCMD="C:\\Program Files\\R\\R-3.1.2\\bin\\R", use_numpy=True, use_pandas=True) datetimes = np.arange('2008-07-01 00:00:00','2008-07-08 00:00:00',dtype='datetime64[h]') for j in range(1,12): data = pd.read_csv('../data/outputs/temp_history_processed_station_%s.csv'%j, parse_dates='datetime') subts = data["value"] print 'Predictions for zone %s'%j results = arima(subts,r) results = pd.DataFrame(results, columns=['value']) results['datetime'] = datetimes results['station_id'] = j predictions.append(results) concatPredictions = pd.concat(predictions) concatPredictions.to_csv(filename, index=False, date_format='%Y-%m-%d %H:%M:%S', mode='a')
def predict(self, algorithm, params, data, time): alg_name = algorithm.lower() if alg_name == 'arima': arima_model = arima(params) arima_model.fit(data) result = arima_model.predict(time) return result if alg_name == 'prophet': prophet_model = Prophet(params) prophet_model.fit(data) result = prophet_model.predict(time) print(result) return result
def arguments_convey(self): self.circle = self.select_circle.currentText() self.sensor_list = [] for item in self.checkBox_list: if item.isChecked(): self.sensor_list.append(int(item.text()[-2:])) # print(self.sensor_list) self.error_output.clear() self.output_widget.clear() self.show_message("predicting...") ari = arima.arima() output, error = ari.predict(self.sensor_list, int(self.circle[-1]), self.path) self.output_widget.clear() self.show_message(output) self.show_error(error)