コード例 #1
0
def insert_unittest_errors(vt, seed=180555):
    """Simulate gain errors and apply
    
    :param vt:
    :param phase_error:
    :param amplitude_error:
    :return:
    """
    numpy.random.seed(seed)
    controls = create_calibration_controls()
    amp_errors = {'T': 0.0, 'G': 0.01, 'B': 0.01}
    phase_errors = {'T': 1.0, 'G': 0.1, 'B': 0.01}
    for c in "TGB":
        gaintable = \
            create_gaintable_from_blockvisibility(vt, timeslice=controls[c]['timeslice'])
        gaintable = simulate_gaintable(
            gaintable,
            timeslice=controls[c]['timeslice'],
            phase_only=controls[c]['phase_only'],
            crosspol=controls[c]['shape'] == 'matrix',
            phase_error=phase_errors[c],
            amplitude_error=amp_errors[c])
        vt = apply_gaintable(vt,
                             gaintable,
                             inverse=True,
                             timeslice=controls[c]['timeslice'])

    return vt
    def test_ical_pipeline(self):
        self.actualSetUp(add_errors=True, block=True)

        controls = create_calibration_controls()

        controls['T']['first_selfcal'] = 2
        controls['G']['first_selfcal'] = 3
        controls['B']['first_selfcal'] = 4

        controls['T']['timescale'] = 'auto'
        controls['G']['timescale'] = 'auto'
        controls['B']['timescale'] = 1e5

        ical_graph = \
            create_ical_pipeline_graph(self.vis_graph_list, model_graph=self.model_graph, context='wstack',
                                       do_selfcal=1, global_solution=False, algorithm='mmclean', vis_slices=51,
                                       facets=1, niter=1000, fractional_threshold=0.1, nmoments=3, nchan=self.freqwin,
                                       threshold=2.0, nmajor=6, gain=0.1)
        if self.compute:
            clean, residual, restored = ical_graph.compute()
            export_image_to_fits(
                clean[0],
                '%s/test_pipelines_ical_pipeline_clean.fits' % self.dir)
            export_image_to_fits(
                residual[0][0],
                '%s/test_pipelines_ical_pipeline_residual.fits' % self.dir)
            export_image_to_fits(
                restored[0],
                '%s/test_pipelines_ical_pipeline_restored.fits' % self.dir)

            qa = qa_image(restored[0])
            assert numpy.abs(qa.data['max'] - 116.86978265) < 5.0, str(qa)
            assert numpy.abs(qa.data['min'] + 0.323425377573) < 5.0, str(qa)
 def test_calibrate_function(self):
     self.actualSetup('stokesI', 'stokesI', f=[100.0])
     # Prepare the corrupted visibility data
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt,
                             phase_error=10.0,
                             amplitude_error=0.1,
                             timeslice='auto')
     bgt = simulate_gaintable(gt,
                              phase_error=0.1,
                              amplitude_error=0.01,
                              timeslice=1e5)
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, bgt, timeslice=1e5)
     self.vis = apply_gaintable(self.vis, gt, timeslice='auto')
     # Now get the control dictionary and calibrate
     controls = create_calibration_controls()
     controls['T']['first_selfcal'] = 0
     controls['B']['first_selfcal'] = 0
     calibrated_vis, gaintables = calibrate_function(self.vis,
                                                     original,
                                                     context='TB',
                                                     controls=controls)
     residual = numpy.max(gaintables['T'].residual)
     assert residual < 3e-2, "Max T residual = %s" % (residual)
     residual = numpy.max(gaintables['B'].residual)
     assert residual < 6e-5, "Max B residual = %s" % (residual)
コード例 #4
0
def ical(block_vis: BlockVisibility,
         model: Image,
         components=None,
         context='2d',
         controls=None,
         **kwargs):
    """ Post observation image, deconvolve, and self-calibrate
   
    :param vis:
    :param model: Model image
    :param components: Initial components
    :param context: Imaging context
    :param controls: Calibration controls dictionary
    :return: model, residual, restored
    """
    nmajor = get_parameter(kwargs, 'nmajor', 5)
    log.info("ical: Performing %d major cycles" % nmajor)

    do_selfcal = get_parameter(kwargs, "do_selfcal", False)

    if controls is None:
        controls = create_calibration_controls(**kwargs)

    # The model is added to each major cycle and then the visibilities are
    # calculated from the full model
    vis = convert_blockvisibility_to_visibility(block_vis)
    block_vispred = copy_visibility(block_vis, zero=True)
    vispred = convert_blockvisibility_to_visibility(block_vispred)
    vispred.data['vis'][...] = 0.0
    visres = copy_visibility(vispred)

    vispred = predict_function(vispred, model, context=context, **kwargs)

    if components is not None:
        vispred = predict_skycomponent_visibility(vispred, components)

    if do_selfcal:
        vis, gaintables = calibrate_function(vis,
                                             vispred,
                                             'TGB',
                                             controls,
                                             iteration=-1)

    visres.data['vis'] = vis.data['vis'] - vispred.data['vis']
    dirty, sumwt = invert_function(visres, model, context=context, **kwargs)
    log.info("Maximum in residual image is %.6f" %
             (numpy.max(numpy.abs(dirty.data))))

    psf, sumwt = invert_function(visres,
                                 model,
                                 dopsf=True,
                                 context=context,
                                 **kwargs)

    thresh = get_parameter(kwargs, "threshold", 0.0)

    for i in range(nmajor):
        log.info("ical: Start of major cycle %d of %d" % (i, nmajor))
        cc, res = deconvolve_cube(dirty, psf, **kwargs)
        model.data += cc.data
        vispred.data['vis'][...] = 0.0
        vispred = predict_function(vispred, model, context=context, **kwargs)
        if do_selfcal:
            vis, gaintables = calibrate_function(vis,
                                                 vispred,
                                                 'TGB',
                                                 controls,
                                                 iteration=i)
        visres.data['vis'] = vis.data['vis'] - vispred.data['vis']

        dirty, sumwt = invert_function(visres,
                                       model,
                                       context=context,
                                       **kwargs)
        log.info("Maximum in residual image is %s" %
                 (numpy.max(numpy.abs(dirty.data))))
        if numpy.abs(dirty.data).max() < 1.1 * thresh:
            log.info("ical: Reached stopping threshold %.6f Jy" % thresh)
            break
        log.info("ical: End of major cycle")

    log.info("ical: End of major cycles")
    restored = restore_cube(model, psf, dirty, **kwargs)

    return model, dirty, restored