コード例 #1
0
def get_model(config: Dict[str, Any], args: argparse.Namespace,
              dataset: FairnessDataset) -> pl.LightningModule:
    """Selects and inits a model instance for training.
    
    Args:
        config: Dict with hyperparameters (learning rate, batch size, eta).
        args: Object from the argument parser that defines various settings of
            the model, dataset and training.
        dataset: Dataset instance that will be used for training.
    
    Returns:
        An instantiated model; one of the following:
                
        Model based on Adversarially Reweighted Learning (ARL).
        Model based on Distributionally Robust Optimization (DRO).
        Model based on Inverse Probability Weighting (IPW).
        Baseline model; simple fully-connected or convolutional (TODO) network.
    """

    model: pl.LightningModule

    model = ARL(
        config=config,  # for hparam tuning
        input_shape=dataset.dimensionality,
        pretrain_steps=args.pretrain_steps,
        prim_hidden=args.prim_hidden,
        adv_hidden=args.adv_hidden,
        optimizer=OPT_BY_NAME[args.opt],
        dataset_type=args.dataset_type,
        adv_input=set(args.adv_input),
        num_groups=len(dataset.protected_index2value),
        opt_kwargs={"initial_accumulator_value": 0.1} if args.tf_mode else {})

    if args.tf_mode:

        def init_weights(layer):
            if type(layer) == torch.nn.Linear:
                torch.nn.init.xavier_uniform_(layer.weight)
                torch.nn.init.zeros_(layer.bias)

        model.apply(init_weights)

    return model
コード例 #2
0
def get_model(config: Dict[str, Any], args: argparse.Namespace,
              dataset: FairnessDataset) -> pl.LightningModule:
    """Selects and inits a model instance for training.
    
    Args:
        config: Dict with hyperparameters (learning rate, batch size, eta).
        args: Object from the argument parser that defines various settings of
            the model, dataset and training.
        dataset: Dataset instance that will be used for training.
    
    Returns:
        An instantiated model; one of the following:
                
        Model based on Adversarially Reweighted Learning (ARL).
        Model based on Distributionally Robust Optimization (DRO).
        Model based on Inverse Probability Weighting (IPW).
        Baseline model; simple fully-connected or convolutional (TODO) network.
    """

    model: pl.LightningModule

    if args.model == 'ARL':
        model = ARL(
            config=config,  # for hparam tuning
            input_shape=dataset.dimensionality,
            pretrain_steps=args.pretrain_steps,
            prim_hidden=args.prim_hidden,
            adv_hidden=args.adv_hidden,
            optimizer=OPT_BY_NAME[args.opt],
            dataset_type=args.dataset_type,
            adv_input=set(args.adv_input),
            num_groups=len(dataset.protected_index2value),
            opt_kwargs={"initial_accumulator_value": 0.1}
            if args.tf_mode else {})

    elif args.model == 'ARL_strong':
        model = ARL(
            config=config,  # for hparam tuning
            input_shape=dataset.dimensionality,
            pretrain_steps=args.pretrain_steps,
            prim_hidden=args.prim_hidden,
            adv_hidden=args.adv_hidden,
            optimizer=OPT_BY_NAME[args.opt],
            dataset_type=args.dataset_type,
            adv_input=set(args.adv_input),
            num_groups=len(dataset.protected_index2value),
            adv_cnn_strength='strong',
            opt_kwargs={"initial_accumulator_value": 0.1}
            if args.tf_mode else {})
    elif args.model == 'ARL_weak':
        model = ARL(
            config=config,  # for hparam tuning
            input_shape=dataset.dimensionality,
            pretrain_steps=args.pretrain_steps,
            prim_hidden=args.prim_hidden,
            adv_hidden=args.adv_hidden,
            optimizer=OPT_BY_NAME[args.opt],
            dataset_type=args.dataset_type,
            adv_input=set(args.adv_input),
            num_groups=len(dataset.protected_index2value),
            adv_cnn_strength='weak',
            opt_kwargs={"initial_accumulator_value": 0.1}
            if args.tf_mode else {})
    elif args.model == 'DRO':
        model = DRO(
            config=config,  # for hparam tuning
            num_features=dataset.dimensionality,
            hidden_units=args.prim_hidden,
            pretrain_steps=args.pretrain_steps,
            k=args.k,
            optimizer=OPT_BY_NAME[args.opt],
            opt_kwargs={"initial_accumulator_value": 0.1}
            if args.tf_mode else {})

    elif args.model == 'IPW':
        model = IPW(
            config=config,  # for hparam tuning
            num_features=dataset.dimensionality,
            hidden_units=args.prim_hidden,
            optimizer=OPT_BY_NAME[args.opt],
            group_probs=dataset.group_probs,
            sensitive_label=args.sensitive_label,
            opt_kwargs={"initial_accumulator_value": 0.1}
            if args.tf_mode else {})
        args.pretrain_steps = 0  # NO PRETRAINING

    elif args.model == 'baseline':
        model = BaselineModel(
            config=config,  # for hparam tuning
            num_features=dataset.dimensionality,
            hidden_units=args.prim_hidden,
            optimizer=OPT_BY_NAME[args.opt],
            dataset_type=args.dataset_type,
            opt_kwargs={"initial_accumulator_value": 0.1}
            if args.tf_mode else {})
        args.pretrain_steps = 0  # NO PRETRAINING

    # if Tensorflow mode is active, we use the TF default initialization,
    # which means Xavier/Glorot uniform (with gain 1) for the weights
    # and 0 bias
    if args.tf_mode:

        def init_weights(layer):
            if type(layer) == torch.nn.Linear:
                torch.nn.init.xavier_uniform_(layer.weight)
                torch.nn.init.zeros_(layer.bias)

        model.apply(init_weights)

    return model