def main():
    parser = argparse.ArgumentParser(
        description='Bandit Experiment of TS-Gaussian-Sicq-Prior-With-Startup')

    # setting of experiment
    parser.add_argument('--exp_num',
                        type=int,
                        default=1,
                        help='Number of experiments')
    parser.add_argument('--play_num',
                        type=int,
                        default=20000,
                        help='Number Playing arms in each experiment.')
    parser.add_argument('--not_run_exp',
                        action='store_true',
                        help='Whether to run experiment')
    parser.add_argument('--save_log',
                        action='store_true',
                        help='Whether to save log')
    parser.add_argument('--show_log',
                        action='store_true',
                        help='Whether to show log')
    parser.add_argument('--summarize_log',
                        action='store_true',
                        help='Whether to summarize log')
    parser.set_defaults(not_run_exp=False)
    parser.set_defaults(save_log=False)
    parser.set_defaults(show_log=False)
    parser.set_defaults(summarize_log=False)

    args = parser.parse_args()

    # define arms
    arms = [NormalDistributionArm(1.0, 3.0), NormalDistributionArm(0.0, 0.3)]

    # define bandit algorithm
    algorithm = ThompsonSamplingGaussianSicqPriorWithStartup(
        len(arms), args.save_log)
    arm_name = ''
    for i in range(len(arms)):
        arm_name += arms[i].name()
    root_folder_name = '../data/' + arm_name + '/' + algorithm.__class__.__name__
    core = BanditCore(arms, algorithm, args)

    # run experiment
    if not args.not_run_exp:
        print('----------Run Exp----------')
        for i in range(args.exp_num):
            print('Run Exp' + str(i))
            # define bandit algorithm
            folder_name = root_folder_name + '/Exp' + str(i)
            core.experiment(folder_name)
            print('Finish Exp' + str(i))
            print('')

    # calculate mean values of log
    if args.summarize_log:
        print('----------Calc Mean of Log----------')
        calc_mean_data(root_folder_name)
コード例 #2
0
def main():
    parser = argparse.ArgumentParser(
        description='Bandit Experiment of HyperOpt')

    # setting of experiment
    parser.add_argument('--exp_num',
                        type=int,
                        default=1,
                        help='Number of experiments')
    parser.add_argument('--play_num',
                        type=int,
                        default=20000,
                        help='Number Playing arms in each experiment.')
    parser.add_argument('--not_run_exp',
                        action='store_true',
                        help='Whether to run experiment')
    parser.add_argument('--save_log',
                        action='store_true',
                        help='Whether to save log')
    parser.add_argument('--show_log',
                        action='store_true',
                        help='Whether to show log')
    parser.add_argument('--summarize_log',
                        action='store_true',
                        help='Whether to summarize log')
    parser.set_defaults(not_run_exp=False)
    parser.set_defaults(save_log=False)
    parser.set_defaults(show_log=False)
    parser.set_defaults(summarize_log=False)

    args = parser.parse_args()

    # define arms
    arms = [NormalDistributionArm(1.0, 3.0), NormalDistributionArm(0.0, 0.3)]

    # define hyper parameters
    hyper_params = {'arm': hp.choice('arm', [i for i in range(len(arms))])}

    # define bandit algorithm
    algorithm = HyperOpt(arms, hyper_params, args.play_num, args.save_log,
                         args.show_log)
    arm_name = ''
    for i in range(len(arms)):
        arm_name += arms[i].name()
    root_folder_name = '../data/' + arm_name + '/' + algorithm.__class__.__name__

    # run experiment
    if not args.not_run_exp:
        print('----------Run Exp----------')
        for i in range(args.exp_num):
            print('Run Exp' + str(i))
            # define bandit algorithm
            folder_name = root_folder_name + '/Exp' + str(i)
            algorithm.experiment(folder_name)
            print('Finish Exp' + str(i))
            print('')

    # calculate mean values of log
    if args.summarize_log:
        print('----------Calc Mean of Log----------')
        calc_mean_data(root_folder_name)