def testReferenceExistingShader( self ) : r = IECoreArnold.Renderer() r.display( "test", "ieDisplay", "rgba", { "driverType" : "ImageDisplayDriver", "handle" : "test" } ) with IECore.WorldBlock( r ) : shader = arnold.AiNode( "standard" ) arnold.AiNodeSetStr( shader, "name", "red_shader" ) arnold.AiNodeSetFlt( shader, "emission", 1 ) arnold.AiNodeSetRGB( shader, "emission_color", 1, 0, 0 ) r.shader( "surface", "reference:red_shader", {} ) r.sphere( 1, -1, 1, 360, {} ) image = IECore.ImageDisplayDriver.removeStoredImage( "test" ) e = IECore.PrimitiveEvaluator.create( image ) result = e.createResult() e.pointAtUV( IECore.V2f( 0.5, 0.5 ), result ) self.assertAlmostEqual( result.floatPrimVar( e.A() ), 1, 5 ) self.assertAlmostEqual( result.floatPrimVar( e.R() ), 1, 5 ) self.assertEqual( result.floatPrimVar( e.G() ), 0 ) self.assertEqual( result.floatPrimVar( e.B() ), 0 )
def testReferenceExistingShader(self): r = IECoreArnold.Renderer() r.display("test", "ieDisplay", "rgba", { "driverType": "ImageDisplayDriver", "handle": "test" }) with IECore.WorldBlock(r): shader = arnold.AiNode("standard") arnold.AiNodeSetStr(shader, "name", "red_shader") arnold.AiNodeSetFlt(shader, "emission", 1) arnold.AiNodeSetRGB(shader, "emission_color", 1, 0, 0) r.shader("surface", "reference:red_shader", {}) r.sphere(1, -1, 1, 360, {}) image = IECoreImage.ImageDisplayDriver.removeStoredImage("test") dimensions = image.dataWindow.size() + IECore.V2i(1) index = dimensions.x * int(dimensions.y * 0.5) + int( dimensions.x * 0.5) self.assertAlmostEqual(image["A"][index], 1, 5) self.assertAlmostEqual(image["R"][index], 1, 5) self.assertEqual(image["G"][index], 0) self.assertEqual(image["B"][index], 0)
def GetNode(user_data, i): ptype, pval = user_data.get("type") n = arnold.AiNode(pval) if n: name = "sample_%s" % pval arnold.AiNodeSetStr(n, "name", name) ne = arnold.AiNodeGetNodeEntry(n) for k, v in user_data.iteritems(): if k == "type": continue ptype, pval = v pe = arnold.AiNodeEntryLookUpParameter(ne, k) if pe: if ptype == arnold.AI_TYPE_BOOLEAN: arnold.AiNodeSetBool(n, k, pval) elif ptype == arnold.AI_TYPE_INT: arnold.AiNodeSetInt(n, k, pval) elif ptype == arnold.AI_TYPE_UINT: arnold.AiNodeSetUInt(n, k, pval) elif ptype == arnold.AI_TYPE_FLOAT: arnold.AiNodeSetFlt(n, k, pval) elif ptype == arnold.AI_TYPE_POINT: arnold.AiNodeSetPnt(n, k, pval.x, pval.y, pval.z) elif ptype == arnold.AI_TYPE_POINT2: arnold.AiNodeSetPnt2(n, k, pval.x, pval.y) elif ptype == arnold.AI_TYPE_VECTOR: arnold.AiNodeSetVec(n, k, pval.x, pval.y, pval.z) elif ptype == arnold.AI_TYPE_RGB: arnold.AiNodeSetRGB(n, k, pval.r, pval.g, pval.b) elif ptype == arnold.AI_TYPE_RGBA: arnold.AiNodeSetRGBA(n, k, pval.r, pval.g, pval.b, pval.a) elif ptype == arnold.AI_TYPE_STRING: arnold.AiNodeSetStr(n, k, pval) return name else: return None
def _worker(data, new_data, redraw_event, mmap_size, mmap_name, state): print("+++ _worker: started") import os import ctypes dir = os.path.dirname(__file__) if dir not in sys.path: sys.path.append(dir) import arnold nodes = {} lights = {} nptrs = [] # nodes linked by AiNodeSetPtr links = [] # nodes linked by AiNodeLink def _AiNodeSetArray(node, param, value): t, a = value _len = len(a) if t == arnold.AI_TYPE_VECTOR: _len //= 3 elif t == arnold.AI_TYPE_UINT: pass _a = arnold.AiArrayConvert(_len, 1, t, ctypes.c_void_p(a.ctypes.data)) arnold.AiNodeSetArray(node, param, _a) _AiNodeSet = { 'NodeSocketShader': lambda n, i, v: True, 'NodeSocketBool': lambda n, i, v: arnold.AiNodeSetBool(n, i, v), 'NodeSocketInt': lambda n, i, v: arnold.AiNodeSetInt(n, i, v), 'NodeSocketFloat': lambda n, i, v: arnold.AiNodeSetFlt(n, i, v), 'NodeSocketColor': lambda n, i, v: arnold.AiNodeSetRGBA(n, i, *v), 'NodeSocketVector': lambda n, i, v: arnold.AiNodeSetVec(n, i, *v), 'NodeSocketVectorXYZ': lambda n, i, v: arnold.AiNodeSetVector(n, i, *v), 'NodeSocketString': lambda n, i, v: arnold.AiNodeSetStr(n, i, v), 'ArnoldNodeSocketColor': lambda n, i, v: arnold.AiNodeSetRGB(n, i, *v), 'ArnoldNodeSocketByte': lambda n, i, v: arnold.AiNodeSetByte(n, i, v), 'ArnoldNodeSocketProperty': lambda n, i, v: True, 'BOOL': lambda n, p, v: arnold.AiNodeSetBool(n, p, v), 'BYTE': lambda n, p, v: arnold.AiNodeSetByte(n, p, v), 'INT': lambda n, p, v: arnold.AiNodeSetInt(n, p, v), 'FLOAT': lambda n, p, v: arnold.AiNodeSetFlt(n, p, v), 'VECTOR2': lambda n, p, v: arnold.AiNodeSetVec2(n, p, *v), 'RGB': lambda n, p, v: arnold.AiNodeSetRGB(n, p, *v), 'RGBA': lambda n, p, v: arnold.AiNodeSetRGBA(n, p, *v), 'VECTOR': lambda n, p, v: arnold.AiNodeSetVec(n, p, *v), 'STRING': lambda n, p, v: arnold.AiNodeSetStr(n, p, v), 'MATRIX': lambda n, p, v: arnold.AiNodeSetMatrix(n, p, arnold.AtMatrix(*v)), 'ARRAY': _AiNodeSetArray, 'LINK': lambda n, p, v: links.append((n, p, v)), 'NODE': lambda n, p, v: nptrs.append((n, p, v)), } arnold.AiBegin() try: # arnold.AiMsgSetConsoleFlags(arnold.AI_LOG_ALL) # arnold.AiMsgSetConsoleFlags(0x000E) # # from pprint import pprint as pp # pp(data) ## Nodes for node in data['nodes']: nt, np = node anode = arnold.AiNode(nt) for n, (t, v) in np.items(): _AiNodeSet[t](anode, n, v) nodes[id(node)] = anode for light in data['lights']: nt, np = light anode = arnold.AiNode(nt) for n, (t, v) in np.items(): _AiNodeSet[t](anode, n, v) lights[id(light)] = anode options = arnold.AiUniverseGetOptions() for n, (t, v) in data['options'].items(): _AiNodeSet[t](options, n, v) for n, p, v in nptrs: arnold.AiNodeSetPtr(n, p, nodes[id(v)]) for n, p, v in links: arnold.AiNodeLink(nodes[id(v)], p, n) ## Outputs filter = arnold.AiNode("gaussian_filter") arnold.AiNodeSetStr(filter, "name", "__filter") driver = arnold.AiNode("driver_display_callback") arnold.AiNodeSetStr(driver, "name", "__driver") #arnold.AiNodeSetBool(driver, "rgba_packing", False) outputs_aovs = (b"RGBA RGBA __filter __driver", ) outputs = arnold.AiArray(len(outputs_aovs), 1, arnold.AI_TYPE_STRING, *outputs_aovs) arnold.AiNodeSetArray(options, "outputs", outputs) sl = data['sl'] del nodes, nptrs, links, data if platform.system() == "Darwin" or "Linux": _rect = lambda w, h: numpy.frombuffer(mmap.mmap(-1, w * h * 4 * 4), dtype=numpy.float32).reshape( [h, w, 4]) rect = _rect(*mmap_size) if platform.system() == "Windows": _rect = lambda n, w, h: numpy.frombuffer( mmap.mmap(-1, w * h * 4 * 4, n), dtype=numpy.float32).reshape( [h, w, 4]) rect = _rect(mmap_name, *mmap_size) def _callback(x, y, width, height, buffer, data): #print("+++ _callback:", x, y, width, height, ctypes.cast(buffer, ctypes.c_void_p)) if buffer: try: if new_data.poll(): arnold.AiRenderInterrupt() else: #print("+++ _callback: tile", x, y, width, height) _buffer = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_uint16)) a = numpy.ctypeslib.as_array(_buffer, shape=(height, width, 4)) rect[y:y + height, x:x + width] = a redraw_event.set() return finally: arnold.AiFree(buffer) elif not new_data.poll(): return arnold.AiRenderAbort() print("+++ _callback: abort") cb = arnold.AtDisplayCallBack(_callback) arnold.AiNodeSetPtr(driver, "callback", cb) class _Dict(dict): def update(self, u): for k, v in u.items(): if isinstance(v, dict): self[k] = _Dict.update(self.get(k, {}), v) else: self[k] = u[k] return self while state.value != ABORT: for _sl in range(*sl): arnold.AiNodeSetInt(options, "AA_samples", _sl) res = arnold.AiRender(arnold.AI_RENDER_MODE_CAMERA) if res == arnold.AI_SUCCESS: break if state.value == ABORT: #print("+++ _worker: abort") break data = _Dict() _data = new_data.recv() print(_data) while _data is not None: # from pprint import pprint as pp # print("+++ _worker: data") # pp(_data) data.update(_data) if not new_data.poll(): _nodes = data.get('nodes') if _nodes is not None: for name, params in _nodes.items(): node = arnold.AiNodeLookUpByName(name) for n, (t, v) in params.items(): _AiNodeSet[t](node, n, v) opts = data.get('options') if opts is not None: for n, (t, v) in opts.items(): _AiNodeSet[t](options, n, v) size = data.get('mmap_size') if size is not None: rect = _rect(mmap_name, *size) break _data = new_data.recv() finally: arnold.AiEnd() print("+++ _worker: finished")
def set_rgb(self, param, r, g, b): if self.is_valid(): arnold.AiNodeSetRGB(self.data, param, r, g, b)
def renderGeo(self): arnold.AiBegin() arnold.AiMsgSetLogFileName(self._logFile) arnold.AiMsgSetConsoleFlags(arnold.AI_LOG_ALL) # create a sphere geometric primitive sph = arnold.AiNode("sphere") arnold.AiNodeSetStr(sph, "name", "mysphere") arnold.AiNodeSetVec(sph, "center", 0.0, 4.0, 0.0) arnold.AiNodeSetFlt(sph, "radius", 5.0) # create a red standard shader shader1 = arnold.AiNode("standard") arnold.AiNodeSetStr(shader1, "name", "myshader1") arnold.AiNodeSetRGB(shader1, "Kd_color", self._color[0], self._color[1], self._color[2]) arnold.AiNodeSetFlt(shader1, "Ks", 0.05) # assign the shaders to the geometric objects arnold.AiNodeSetPtr(sph, "shader", shader1) # create a perspective camera camera = arnold.AiNode("persp_camera") arnold.AiNodeSetStr(camera, "name", "mycamera") # position the camera (alternatively you can set 'matrix') arnold.AiNodeSetVec(camera, "position", 0.0, 10.0, 35.0) arnold.AiNodeSetVec(camera, "look_at", 0.0, 3.0, 0.0) arnold.AiNodeSetFlt(camera, "fov", 45.0) # create a point light source light = arnold.AiNode("point_light") arnold.AiNodeSetStr(light, "name", "pointLight_A") # // position the light (alternatively use 'matrix') arnold.AiNodeSetVec(light, "position", 0.0, 30.0, 0.0) arnold.AiNodeSetFlt(light, "intensity", 10.0) # alternatively, use 'exposure' arnold.AiNodeSetFlt(light, "radius", 4.0) # for soft shadows # create a point light source light = arnold.AiNode("point_light") arnold.AiNodeSetStr(light, "name", "pointLight_B") # // position the light (alternatively use 'matrix') arnold.AiNodeSetVec(light, "position", 0.0, -30.0, 0.0) arnold.AiNodeSetFlt(light, "intensity", 10.0) # alternatively, use 'exposure' arnold.AiNodeSetFlt(light, "radius", 4.0) # for soft shadows # create a point light source light = arnold.AiNode("point_light") arnold.AiNodeSetStr(light, "name", "pointLight_C") # // position the light (alternatively use 'matrix') arnold.AiNodeSetVec(light, "position", 0.0, 4.0, 20.0) arnold.AiNodeSetFlt(light, "intensity", 5.0) # alternatively, use 'exposure' arnold.AiNodeSetFlt(light, "radius", 15.0) # for soft shadows # // get the global options node and set some options options = arnold.AiUniverseGetOptions() arnold.AiNodeSetInt(options, "AA_samples", 8) arnold.AiNodeSetInt(options, "xres", 480) arnold.AiNodeSetInt(options, "yres", 360) arnold.AiNodeSetInt(options, "GI_diffuse_depth", 4) # // set the active camera (optional, since there is only one camera) arnold.AiNodeSetPtr(options, "camera", camera) # create an output driver node driver = arnold.AiNode("driver_jpeg") arnold.AiNodeSetStr(driver, "name", "mydriver") arnold.AiNodeSetStr(driver, "filename", self._sceneName) arnold.AiNodeSetFlt(driver, "gamma", 2.2) # create a gaussian filter node filter = arnold.AiNode("gaussian_filter") arnold.AiNodeSetStr(filter, "name", "myfilter") # assign the driver and filter to the main (beauty) AOV, # which is called "RGBA" and is of type RGBA outputs_array = arnold.AiArrayAllocate(1, 1, arnold.AI_TYPE_STRING) arnold.AiArraySetStr(outputs_array, 0, "RGBA RGBA myfilter mydriver") arnold.AiNodeSetArray(options, "outputs", outputs_array) # finally, render the image! arnold.AiRender(arnold.AI_RENDER_MODE_CAMERA) # // Arnold session shutdown arnold.AiEnd()