#!/usr/bin/env python import matplotlib.pyplot as plt from array_plotting import plotting fig = plt.figure() ax = fig.add_subplot(111) p = plotting(ax) help(p)
window=[t_min, t_max], Boots=Boots, epsilon=epsilon, slow_vec_error=slow_vec_error, Filter=False, ) # df = pd.DataFrame({"Slow_x":All_Thresh_Peaks_arr[:,0], "Slow_y":All_Thresh_Peaks_arr[:,1], "Labels":new_labels}) # plot! with PdfPages(Res_dir + f"Clustering_Summary_Plot_{fmin:.2f}_{fmax:.2f}.pdf") as pdf: # clusters fig = plt.figure(figsize=(10, 8)) ax1 = fig.add_subplot(111) p = plotting(ax=ax1) p.plot_clusters_XY( labels=new_labels, tp=Lin_Mean, peaks=All_Thresh_Peaks_arr, sxmin=x_min, sxmax=x_max, symin=y_min, symax=y_max, sstep=s_space, title="Clusters", predictions=predictions, ellipse=True, std_devs=[1, 2, 3], )
action="store", ) args = parser.parse_args() filepath = args.file_path # read in the SAC files st = obspy.read(filepath) fig = plt.figure(figsize=(6, 6)) # need to give a projection for the cartopy package # to work. See a list here: # https://scitools.org.uk/cartopy/docs/latest/crs/projections.html ax = fig.add_subplot(111, projection=ccrs.PlateCarree()) p = plotting(ax=ax) p.plot_stations(st) ax.gridlines( crs=ccrs.PlateCarree(), draw_labels=True, linewidth=0, color="gray", alpha=0.5, linestyle="--", ) fig = plt.figure(figsize=(6, 6)) ax = fig.add_subplot(111, projection=ccrs.Robinson()) p = plotting(ax=ax) p.plot_paths(st)
filepath=filepath, st=st, peaks=slow_vec_obs, prediction=pred_file, phase=phase, time_window=window, ) print(st) # plot! with PdfPages(Res_dir + f"TP_Summary_Plot_{fmin:.2f}_{fmax:.2f}.pdf") as pdf: fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(111) p = plotting(ax=ax) p.plot_TP_XY( tp=Plot_arr, peaks=peaks, sxmin=sx_min_plot, sxmax=sx_max_plot, symin=sy_min_plot, symax=sy_max_plot, sstep=s_space, contour_levels=20, title="%s Plot" % Stack_type, predictions=predictions, log=False, ) pdf.savefig()
header = "event centroid_lo centroid_la, n_stations, stations\n" with open(Res_file, 'w') as w_file: w_file.write(header) try: st = obspy.read(filepath) final_centroids, lats_lons_use, lats_lons_core, stations_use = c.break_sub_arrays( st=st, min_stat=min_stat, min_dist=min_dist, spacing=spacing) fig = plt.figure(figsize=(10, 8), tight_layout=True) ax1 = fig.add_subplot(111, projection=ccrs.Robinson()) p = plotting(ax1) p.plot_stations(st) print(lats_lons_use) use_tree = BallTree(lats_lons_use, leaf_size=lats_lons_use.shape[0] / 2, metric='haversine') with open(Res_file, 'a') as a_file: for i, centroid in enumerate(final_centroids): lat_centre = np.around(centroid[0], 2) lon_centre = np.around(centroid[1], 2) sub_array = use_tree.query_radius(X=[centroid], r=min_dist)[0] print(lon_centre, lat_centre)
mode='constant') # Ok! Now find the top 2 peaks using the findpeaks function. peaks_auto = c.findpeaks_XY(Array=smoothed_arr, xmin=slow_x_min, xmax=slow_x_max, ymin=slow_y_min, ymax=slow_y_max, xstep=s_space, ystep=s_space, N=2) print('peaks:\n', peaks_auto) fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(121) p = plotting(ax) # plot to see if they're any good. p.plot_TP_XY(tp=PWS_arr, peaks=peaks_auto, sxmin=slow_x_min, sxmax=slow_x_max, symin=slow_y_min, symax=slow_y_max, sstep=s_space, contour_levels=50, title="PWS Plot", predictions=predictions, log=False) slow_min = float(S) - 2