コード例 #1
0
def flat_norm(ary, ord=None) -> float:
    r"""Return an element-wise :math:`\ell^{\text{ord}}` norm of *ary*.

    :arg ary: may be a :class:`DOFArray` or a
        :class:`~arraycontext.ArrayContainer` containing them.
    """

    from numbers import Number
    if isinstance(ary, Number):
        return abs(ary)

    if ord is None:
        ord = 2

    from arraycontext import is_array_container

    import numpy.linalg as la
    if isinstance(ary, DOFArray):
        actx = ary.array_context
        return la.norm([
            actx.np.linalg.norm(actx.np.ravel(ary, order="A"), ord=ord)
            for _, subary in serialize_container(ary)
        ],
                       ord=ord)

    elif is_array_container(ary):
        return la.norm([
            flat_norm(subary, ord=ord)
            for _, subary in serialize_container(ary)
        ],
                       ord=ord)

    raise TypeError(
        f"unsupported array type passed to flat_norm: '{type(ary).__name__}'")
コード例 #2
0
    def _unflatten_like(_ary, _prototype):
        if isinstance(_prototype, DOFArray):
            group_shapes = [subary.shape for subary in _prototype]
            group_sizes = [subary.size for subary in _prototype]
            group_starts = np.cumsum([0] + group_sizes)

            return _unflatten_dof_array(actx,
                                        _ary,
                                        group_shapes,
                                        group_starts,
                                        strict=True)
        elif is_array_container(_prototype):
            assert type(_ary) is type(_prototype)

            return deserialize_container(_prototype, [
                (_same_key(key1, key2), _unflatten_like(subary, subprototype))
                for (key1, subary), (key2, subprototype) in zip(
                    serialize_container(_ary), serialize_container(_prototype))
            ])
        else:
            if strict:
                raise ValueError(
                    "cannot unflatten array "
                    f"with prototype '{type(_prototype).__name__}'; "
                    "use 'strict=False' to leave the array unchanged")

            assert type(_ary) is type(_prototype)
            return _ary
コード例 #3
0
ファイル: reductions.py プロジェクト: nchristensen/grudge
def nodal_sum_loc(dcoll: DiscretizationCollection, dd, vec) -> "DeviceScalar":
    r"""Return the rank-local nodal sum of a vector of degrees of freedom *vec*.

    :arg dd: a :class:`~grudge.dof_desc.DOFDesc`, or a value
        convertible to one.
    :arg vec: a :class:`~meshmode.dof_array.DOFArray` or an
        :class:`~arraycontext.container.ArrayContainer` of them.
    :returns: a scalar denoting the rank-local nodal sum.
    """
    if not isinstance(vec, DOFArray):
        return sum(
            nodal_sum_loc(dcoll, dd, comp)
            for _, comp in serialize_container(vec))

    actx = vec.array_context

    return sum([actx.np.sum(grp_ary) for grp_ary in vec])
コード例 #4
0
ファイル: reductions.py プロジェクト: nchristensen/grudge
def nodal_max_loc(dcoll: DiscretizationCollection, dd, vec) -> "DeviceScalar":
    r"""Return the rank-local nodal maximum of a vector of degrees
    of freedom *vec*.

    :arg dd: a :class:`~grudge.dof_desc.DOFDesc`, or a value
        convertible to one.
    :arg vec: a :class:`~meshmode.dof_array.DOFArray` or an
        :class:`~arraycontext.container.ArrayContainer`.
    :returns: a scalar denoting the rank-local nodal maximum.
    """
    if not isinstance(vec, DOFArray):
        return max(
            nodal_max_loc(dcoll, dd, comp)
            for _, comp in serialize_container(vec))

    actx = vec.array_context

    return reduce(
        lambda acc, grp_ary: actx.np.maximum(acc, actx.np.max(grp_ary)), vec,
        actx.from_numpy(np.array(-np.inf)))