def _lu_internal(a: ndarray, permute_l: bool = False, overwrite_a: bool = False, is_lapack_piv: bool = True) \ -> tp.Union[tp.Tuple[ndarray, ndarray], tp.Tuple[ndarray, ndarray, ndarray]]: if overwrite_a: if permute_l: if is_lapack_piv: pivot = "lapack" else: pivot = "full" P = af.lu_inplace(a._af_array, pivot=pivot) return ndarray(P), a else: raise ValueError("cannot overwrite a without permuting l") else: if permute_l: raise ValueError("cannot permute l without overwriting a") else: (L, U, P) = af.lu(a._af_array) return ndarray(P), ndarray(L), ndarray(U)
def simple_lapack(verbose=False): display_func = _util.display_func(verbose) print_func = _util.print_func(verbose) a = af.randu(5, 5) l, u, p = af.lu(a) display_func(l) display_func(u) display_func(p) p = af.lu_inplace(a, "full") display_func(a) display_func(p) a = af.randu(5, 3) q, r, t = af.qr(a) display_func(q) display_func(r) display_func(t) af.qr_inplace(a) display_func(a) a = af.randu(5, 5) a = af.matmulTN(a, a.copy()) + 10 * af.identity(5, 5) R, info = af.cholesky(a) display_func(R) print_func(info) af.cholesky_inplace(a) display_func(a) a = af.randu(5, 5) ai = af.inverse(a) display_func(a) display_func(ai) x0 = af.randu(5, 3) b = af.matmul(a, x0) x1 = af.solve(a, b) display_func(x0) display_func(x1) p = af.lu_inplace(a) x2 = af.solve_lu(a, p, b) display_func(x2) print_func(af.rank(a)) print_func(af.det(a)) print_func(af.norm(a, af.NORM.EUCLID)) print_func(af.norm(a, af.NORM.MATRIX_1)) print_func(af.norm(a, af.NORM.MATRIX_INF)) print_func(af.norm(a, af.NORM.MATRIX_L_PQ, 1, 1)) a = af.randu(10, 10) display_func(a) u, s, vt = af.svd(a) display_func(af.matmul(af.matmul(u, af.diag(s, 0, False)), vt)) u, s, vt = af.svd_inplace(a) display_func(af.matmul(af.matmul(u, af.diag(s, 0, False)), vt))
def simple_lapack(verbose=False): display_func = _util.display_func(verbose) print_func = _util.print_func(verbose) a = af.randu(5,5) l,u,p = af.lu(a) display_func(l) display_func(u) display_func(p) p = af.lu_inplace(a, "full") display_func(a) display_func(p) a = af.randu(5,3) q,r,t = af.qr(a) display_func(q) display_func(r) display_func(t) af.qr_inplace(a) display_func(a) a = af.randu(5, 5) a = af.matmulTN(a, a) + 10 * af.identity(5,5) R,info = af.cholesky(a) display_func(R) print_func(info) af.cholesky_inplace(a) display_func(a) a = af.randu(5,5) ai = af.inverse(a) display_func(a) display_func(ai) x0 = af.randu(5, 3) b = af.matmul(a, x0) x1 = af.solve(a, b) display_func(x0) display_func(x1) p = af.lu_inplace(a) x2 = af.solve_lu(a, p, b) display_func(x2) print_func(af.rank(a)) print_func(af.det(a)) print_func(af.norm(a, af.NORM.EUCLID)) print_func(af.norm(a, af.NORM.MATRIX_1)) print_func(af.norm(a, af.NORM.MATRIX_INF)) print_func(af.norm(a, af.NORM.MATRIX_L_PQ, 1, 1))
#!/usr/bin/python ####################################################### # Copyright (c) 2015, ArrayFire # All rights reserved. # # This file is distributed under 3-clause BSD license. # The complete license agreement can be obtained at: # http://arrayfire.com/licenses/BSD-3-Clause ######################################################## import arrayfire as af a = af.randu(5, 5) l, u, p = af.lu(a) af.display(l) af.display(u) af.display(p) p = af.lu_inplace(a, "full") af.display(a) af.display(p) a = af.randu(5, 3) q, r, t = af.qr(a) af.display(q) af.display(r) af.display(t)