def simple_statistics(verbose=False): display_func = _util.display_func(verbose) print_func = _util.print_func(verbose) a = af.randu(5, 5) b = af.randu(5, 5) w = af.randu(5, 1) display_func(af.mean(a, dim=0)) display_func(af.mean(a, weights=w, dim=0)) print_func(af.mean(a)) print_func(af.mean(a, weights=w)) display_func(af.var(a, dim=0)) display_func(af.var(a, isbiased=True, dim=0)) display_func(af.var(a, weights=w, dim=0)) print_func(af.var(a)) print_func(af.var(a, isbiased=True)) print_func(af.var(a, weights=w)) display_func(af.stdev(a, dim=0)) print_func(af.stdev(a)) display_func(af.var(a, dim=0)) display_func(af.var(a, isbiased=True, dim=0)) print_func(af.var(a)) print_func(af.var(a, isbiased=True)) display_func(af.median(a, dim=0)) print_func(af.median(w)) print_func(af.corrcoef(a, b))
def simple_statistics(verbose=False): display_func = _util.display_func(verbose) print_func = _util.print_func(verbose) a = af.randu(5, 5) b = af.randu(5, 5) w = af.randu(5, 1) display_func(af.mean(a, dim=0)) display_func(af.mean(a, weights=w, dim=0)) print_func(af.mean(a)) print_func(af.mean(a, weights=w)) display_func(af.var(a, dim=0)) display_func(af.var(a, isbiased=True, dim=0)) display_func(af.var(a, weights=w, dim=0)) print_func(af.var(a)) print_func(af.var(a, isbiased=True)) print_func(af.var(a, weights=w)) mean, var = af.meanvar(a, dim=0) display_func(mean) display_func(var) mean, var = af.meanvar(a, weights=w, bias=af.VARIANCE.SAMPLE, dim=0) display_func(mean) display_func(var) display_func(af.stdev(a, dim=0)) print_func(af.stdev(a)) display_func(af.var(a, dim=0)) display_func(af.var(a, isbiased=True, dim=0)) print_func(af.var(a)) print_func(af.var(a, isbiased=True)) display_func(af.median(a, dim=0)) print_func(af.median(w)) print_func(af.corrcoef(a, b)) data = af.iota(5, 3) k = 3 dim = 0 order = af.TOPK.DEFAULT # defaults to af.TOPK.MAX assert (dim == 0) # topk currently supports first dim only values, indices = af.topk(data, k, dim, order) display_func(values) display_func(indices)
def var(a: ndarray, axis: tp.Optional[int] = None, dtype: tp.Optional[np.generic] = None, out: tp.Optional[ndarray] = None, ddof: int = 0, keepdims: bool = False) -> tp.Union[float, ndarray]: """ Compute the variance along the specified axis. """ isbiased = True if ddof is not None: if ddof == 1: isbiased = False elif ddof == 0: pass else: raise ValueError(f"ddof must be 0 or 1, ddof={ddof} is not " f"supported") new_af_array \ = af.var(a._af_array, isbiased=isbiased, weights=None, dim=axis) if isinstance(new_af_array, af.Array): return ndarray(new_af_array) else: return new_af_array
def simple_statistics(verbose=False): display_func = _util.display_func(verbose) print_func = _util.print_func(verbose) a = af.randu(5, 5) b = af.randu(5, 5) w = af.randu(5, 1) display_func(af.mean(a, dim=0)) display_func(af.mean(a, weights=w, dim=0)) print_func(af.mean(a)) print_func(af.mean(a, weights=w)) display_func(af.var(a, dim=0)) display_func(af.var(a, isbiased=True, dim=0)) display_func(af.var(a, weights=w, dim=0)) print_func(af.var(a)) print_func(af.var(a, isbiased=True)) print_func(af.var(a, weights=w)) display_func(af.stdev(a, dim=0)) print_func(af.stdev(a)) display_func(af.var(a, dim=0)) display_func(af.var(a, isbiased=True, dim=0)) print_func(af.var(a)) print_func(af.var(a, isbiased=True)) display_func(af.median(a, dim=0)) print_func(af.median(w)) print_func(af.corrcoef(a, b)) data = af.iota(5, 3) k = 3 dim = 0 order = af.TOPK.DEFAULT # defaults to af.TOPK.MAX assert(dim == 0) # topk currently supports first dim only values,indices = af.topk(data, k, dim, order) display_func(values) display_func(indices)
def std(a: ndarray, axis: tp.Optional[int] = None, ddof: int = 0) \ -> tp.Union[ndarray, numbers.Number]: """ Compute the standard deviation along the specified axis. """ new_af_array: tp.Optional[tp.Union[ndarray, numbers.Number]] = None if ddof or ddof == 0: new_af_array = af.stdev(a._af_array, dim=axis) elif ddof == 1: new_af_array = af.sqrt(af.var(a._af_array, isbiased=False, dim=axis)) if isinstance(new_af_array, af.Array): return ndarray(new_af_array) else: return new_af_array
# The complete license agreement can be obtained at: # http://arrayfire.com/licenses/BSD-3-Clause ######################################################## import arrayfire as af a = af.randu(5, 5) b = af.randu(5, 5) w = af.randu(5, 1) af.display(af.mean(a, dim=0)) af.display(af.mean(a, weights=w, dim=0)) print(af.mean(a)) print(af.mean(a, weights=w)) af.display(af.var(a, dim=0)) af.display(af.var(a, isbiased=True, dim=0)) af.display(af.var(a, weights=w, dim=0)) print(af.var(a)) print(af.var(a, isbiased=True)) print(af.var(a, weights=w)) af.display(af.stdev(a, dim=0)) print(af.stdev(a)) af.display(af.var(a, dim=0)) af.display(af.var(a, isbiased=True, dim=0)) print(af.var(a)) print(af.var(a, isbiased=True)) af.display(af.median(a, dim=0))
#!/usr/bin/python import arrayfire as af a = af.randu(5, 5) b = af.randu(5, 5) w = af.randu(5, 1) af.print_array(af.mean(a, dim=0)) af.print_array(af.mean(a, weights=w, dim=0)) print(af.mean(a)) print(af.mean(a, weights=w)) af.print_array(af.var(a, dim=0)) af.print_array(af.var(a, isbiased=True, dim=0)) af.print_array(af.var(a, weights=w, dim=0)) print(af.var(a)) print(af.var(a, isbiased=True)) print(af.var(a, weights=w)) af.print_array(af.stdev(a, dim=0)) print(af.stdev(a)) af.print_array(af.var(a, dim=0)) af.print_array(af.var(a, isbiased=True, dim=0)) print(af.var(a)) print(af.var(a, isbiased=True)) af.print_array(af.median(a, dim=0)) print(af.median(w)) print(af.corrcoef(a, b))