コード例 #1
0
def test_generate(art_warning, fix_get_mnist_subset,
                  image_dl_estimator_for_attack):
    try:
        classifier = image_dl_estimator_for_attack(
            AutoProjectedGradientDescent)

        attack = AutoProjectedGradientDescent(
            estimator=classifier,
            norm=np.inf,
            eps=0.3,
            eps_step=0.1,
            max_iter=5,
            targeted=False,
            nb_random_init=1,
            batch_size=32,
            loss_type="cross_entropy",
            verbose=False,
        )

        (x_train_mnist, y_train_mnist, x_test_mnist,
         y_test_mnist) = fix_get_mnist_subset

        x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist)

        assert np.mean(np.abs(x_train_mnist_adv -
                              x_train_mnist)) == pytest.approx(0.0329,
                                                               abs=0.005)
        assert np.max(np.abs(x_train_mnist_adv -
                             x_train_mnist)) == pytest.approx(0.3, abs=0.01)
    except ARTTestException as e:
        art_warning(e)
def test_generate(is_tf_version_2, fix_get_mnist_subset, get_image_classifier_list_for_attack):

    if is_tf_version_2:
        classifier_list = get_image_classifier_list_for_attack(AutoProjectedGradientDescent)

        if classifier_list is None:
            logging.warning("Couldn't perform this test because no classifier is defined")
            return

        for classifier in classifier_list:
            attack = AutoProjectedGradientDescent(
                estimator=classifier,
                norm=np.inf,
                eps=0.3,
                eps_step=0.1,
                max_iter=5,
                targeted=False,
                nb_random_init=1,
                batch_size=32,
                loss_type="cross_entropy",
            )

            (x_train_mnist, y_train_mnist, x_test_mnist, y_test_mnist) = fix_get_mnist_subset

            x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist)

            assert np.mean(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(0.0329, abs=0.005)
            assert np.max(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(0.3, abs=0.01)
コード例 #3
0
def test_generate(art_warning, fix_get_mnist_subset,
                  image_dl_estimator_for_attack, framework, loss_type, norm):
    print("test_generate")
    try:
        classifier = image_dl_estimator_for_attack(
            AutoProjectedGradientDescent, from_logits=True)

        print("framework", framework)

        if framework in ["tensorflow1", "tensorflow2v1"
                         ] and loss_type == "difference_logits_ratio":
            with pytest.raises(ValueError):
                _ = AutoProjectedGradientDescent(
                    estimator=classifier,
                    norm=norm,
                    eps=0.3,
                    eps_step=0.1,
                    max_iter=5,
                    targeted=False,
                    nb_random_init=1,
                    batch_size=32,
                    loss_type=loss_type,
                    verbose=False,
                )
        else:

            attack = AutoProjectedGradientDescent(
                estimator=classifier,
                norm=norm,
                eps=0.3,
                eps_step=0.1,
                max_iter=5,
                targeted=False,
                nb_random_init=1,
                batch_size=32,
                loss_type=loss_type,
                verbose=False,
            )

            (x_train_mnist, y_train_mnist, x_test_mnist,
             y_test_mnist) = fix_get_mnist_subset

            x_train_mnist_adv = attack.generate(x=x_train_mnist,
                                                y=y_train_mnist)

            assert np.max(np.abs(x_train_mnist_adv - x_train_mnist)) > 0.0

    except ARTTestException as e:
        art_warning(e)
コード例 #4
0
ファイル: train_attacks.py プロジェクト: changx03/baard_exp2
def main():
    with open('data.json') as data_json:
        data_params = json.load(data_json)

    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str)
    parser.add_argument('--data_path', type=str, default='data')
    parser.add_argument('--output_path', type=str, default='results')
    parser.add_argument('--pretrained', type=str, required=True)
    parser.add_argument('--batch_size', type=int, default=128)
    parser.add_argument('--attack', type=str, required=True, choices=data_params['attacks'])
    parser.add_argument('--eps', type=float, default=0.3)
    # NOTE: In CW_L2 attack, eps is the upper bound of c.
    parser.add_argument('--n_samples', type=int, default=2000)
    parser.add_argument('--random_state', type=int, default=1234)
    args = parser.parse_args()
    print(args)

    set_seeds(args.random_state)
    
    if not os.path.exists(args.output_path):
        print('Output folder does not exist. Create:', args.output_path)
        os.mkdir(args.output_path)
        
    print('Dataset:', args.data)
    print('Pretrained model:', args.pretrained)
    print('Running attack: {}'.format(args.attack))
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: {}'.format(device))

    # Prepare data
    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])

    if args.data == 'mnist':
        dataset_train = datasets.MNIST(args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.MNIST(args.data_path, train=False, download=True, transform=transforms)
    elif args.data == 'cifar10':
        dataset_train = datasets.CIFAR10(args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.CIFAR10(args.data_path, train=False, download=True, transform=transforms)
    else:
        data_path = os.path.join(args.data_path, data_params['data'][args.data]['file_name'])
        print('Read file:', data_path)
        X, y = load_csv(data_path)

        X_train, X_test, y_train, y_test = train_test_split(
            X, y,
            test_size=data_params['data'][args.data]['n_test'],
            random_state=args.random_state)
        scaler = MinMaxScaler().fit(X_train)
        X_train = scaler.transform(X_train)
        X_test = scaler.transform(X_test)
        dataset_train = TensorDataset(torch.from_numpy(X_train).type(torch.float32), torch.from_numpy(y_train).type(torch.long))
        dataset_test = TensorDataset(torch.from_numpy(X_test).type(torch.float32), torch.from_numpy(y_test).type(torch.long))

    dataloader_train = DataLoader(dataset_train, 256, shuffle=False)
    dataloader_test = DataLoader(dataset_test, 256, shuffle=False)

    shape_train = get_shape(dataloader_train.dataset)
    shape_test = get_shape(dataloader_test.dataset)
    print('Train set:', shape_train)
    print('Test set:', shape_test)

    # Load model
    use_prob = args.attack not in ['apgd', 'apgd1', 'apgd2', 'cw2', 'cwinf']
    print('Attack:', args.attack)
    print('Using softmax layer:', use_prob)
    if args.data == 'mnist':
        model = BaseModel(use_prob=use_prob).to(device)
        model_name = 'basic'
    elif args.data == 'cifar10':
        model_name = args.pretrained.split('_')[1]
        if model_name == 'resnet':
            model = Resnet(use_prob=use_prob).to(device)
        elif model_name == 'vgg':
            model = Vgg(use_prob=use_prob).to(device)
        else:
            raise ValueError('Unknown model: {}'.format(model_name))
    else:
        n_features = data_params['data'][args.data]['n_features']
        n_classes = data_params['data'][args.data]['n_classes']
        model = NumericModel(
            n_features,
            n_hidden=n_features * 4,
            n_classes=n_classes,
            use_prob=use_prob).to(device)
        model_name = 'basic' + str(n_features * 4)

    optimizer = optim.SGD(model.parameters(), lr=0.01,
                          momentum=0.9, weight_decay=5e-4)
    loss = nn.CrossEntropyLoss()
    pretrained_path = os.path.join(args.output_path, args.pretrained)
    model.load_state_dict(torch.load(pretrained_path, map_location=device))

    _, acc_train = validate(model, dataloader_train, loss, device)
    _, acc_test = validate(model, dataloader_test, loss, device)
    print('Accuracy on train set: {:.4f}%'.format(acc_train * 100))
    print('Accuracy on test set: {:.4f}%'.format(acc_test * 100))

    # Create a subset which only contains recognisable samples.
    tensor_test_X, tensor_test_y = get_correct_examples(
        model, dataset_test, device=device, return_tensor=True)
    dataset_perfect = TensorDataset(tensor_test_X, tensor_test_y)
    loader_perfect = DataLoader(dataset_perfect, batch_size=512, shuffle=False)
    _, acc_perfect = validate(model, loader_perfect, loss, device)
    print('Accuracy on {} filtered test examples: {:.4f}%'.format(
        len(dataset_perfect), acc_perfect * 100))

    # Generate adversarial examples
    n_features = data_params['data'][args.data]['n_features']
    n_classes = data_params['data'][args.data]['n_classes']
    if isinstance(n_features, int):
        n_features = (n_features,)

    classifier = PyTorchClassifier(
        model=model,
        loss=loss,
        input_shape=n_features,
        optimizer=optimizer,
        nb_classes=n_classes,
        clip_values=(0.0, 1.0),
        device_type='gpu')

    if args.attack == 'apgd':
        eps_step = args.eps / 10.0 if args.eps <= 0.1 else 0.1
        attack = AutoProjectedGradientDescent(
            estimator=classifier,
            eps=args.eps,
            eps_step=eps_step,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'apgd1':
        attack = AutoProjectedGradientDescent(
            estimator=classifier,
            norm=1,
            eps=args.eps,
            eps_step=0.1,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'apgd2':
        attack = AutoProjectedGradientDescent(
            estimator=classifier,
            norm=2,
            eps=args.eps,
            eps_step=0.1,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'bim':
        eps_step = args.eps / 10.0
        attack = BasicIterativeMethod(
            estimator=classifier,
            eps=args.eps,
            eps_step=eps_step,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'boundary':
        attack = BoundaryAttack(
            estimator=classifier,
            max_iter=1000,
            sample_size=args.batch_size,
            targeted=False)
    elif args.attack == 'cw2':
        # NOTE: Do NOT increase the batch size!
        attack = CarliniWagnerAttackL2(
            model=model,
            n_classes=n_classes,
            confidence=args.eps,
            verbose=True,
            check_prob=False,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'cwinf':
        attack = CarliniLInfMethod(
            classifier=classifier,
            confidence=args.eps,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'deepfool':
        attack = DeepFool(
            classifier=classifier,
            epsilon=args.eps,
            batch_size=args.batch_size)
    elif args.attack == 'fgsm':
        attack = FastGradientMethod(
            estimator=classifier,
            eps=args.eps,
            batch_size=args.batch_size)
    elif args.attack == 'jsma':
        attack = SaliencyMapMethod(
            classifier=classifier,
            gamma=args.eps,
            batch_size=args.batch_size)
    elif args.attack == 'line':
        if args.data == 'mnist':
            color = args.eps
        elif args.data == 'cifar10':
            color = (args.eps, args.eps, args.eps)
        else:
            raise NotImplementedError
        attack = LineAttack(color=color, thickness=1)
    elif args.attack == 'shadow':
        attack = ShadowAttack(
            estimator=classifier,
            batch_size=args.batch_size,
            targeted=False,
            verbose=False)
    elif args.attack == 'watermark':
        attack = WaterMarkAttack(
            eps=args.eps,
            n_classes=data_params['data'][args.data]['n_classes'],
            x_min=0.0,
            x_max=1.0,
            targeted=False)

        X_train, y_train = get_correct_examples(model, dataset_train, device=device, return_tensor=True)
        X_train = X_train.cpu().detach().numpy()
        y_train = y_train.cpu().detach().numpy()
        attack.fit(X_train, y_train)
    else:
        raise NotImplementedError

    if len(dataset_perfect) > args.n_samples:
        n = args.n_samples
    else:
        n = len(dataset_perfect)

    X_benign = tensor_test_X[:n].cpu().detach().numpy()
    y = tensor_test_y[:n].cpu().detach().numpy()

    print('Creating {} adversarial examples with eps={} (Not all attacks use eps)'.format(n, args.eps))
    time_start = time.time()
    # Shadow attack only takes single sample!
    if args.attack == 'shadow':
        adv = np.zeros_like(X_benign)
        for i in trange(len(X_benign)):
            adv[i] = attack.generate(x=np.expand_dims(X_benign[i], axis=0))
    elif args.attack == 'watermark':
        # This is untargeted.
        adv = attack.generate(X_benign, y)
    else:
        adv = attack.generate(x=X_benign)
    time_elapsed = time.time() - time_start
    print('Total time spend: {}'.format(str(datetime.timedelta(seconds=time_elapsed))))

    pred_benign = np.argmax(classifier.predict(X_benign), axis=1)
    acc_benign = np.sum(pred_benign == y) / n
    pred_adv = np.argmax(classifier.predict(adv), axis=1)
    acc_adv = np.sum(pred_adv == y) / n
    print("Accuracy on benign samples: {:.4f}%".format(acc_benign * 100))
    print("Accuracy on adversarial examples: {:.4f}%".format(acc_adv * 100))

    # Save results
    if args.n_samples < 2000:
        output_file = '{}_{}_{}_{}_size{}'.format(args.data, model_name, args.attack, str(args.eps), args.n_samples)
    else:
        output_file = '{}_{}_{}_{}'.format(args.data, model_name, args.attack, str(args.eps))

    path_x = os.path.join(args.output_path, '{}_x.npy'.format(output_file))
    path_y = os.path.join(args.output_path, '{}_y.npy'.format(output_file))
    path_adv = os.path.join(args.output_path, '{}_adv.npy'.format(output_file))
    np.save(path_x, X_benign)
    np.save(path_y, y)
    np.save(path_adv, adv)

    print('Saved to:', '{}_adv.npy'.format(output_file))
    print()
コード例 #5
0
def train_adv(data='mnist',
              model_name='basic',
              n_samples=2000,
              eps=2.,
              path_output='results',
              path_data='data',
              is_test=False,
              batch_size=128,
              device='cpu'):
    # Prepare data
    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])
    if data == 'mnist':
        dataset_test = datasets.MNIST(path_data,
                                      train=False,
                                      download=True,
                                      transform=transforms)
    elif data == 'cifar10':
        dataset_test = datasets.CIFAR10(path_data,
                                        train=False,
                                        download=True,
                                        transform=transforms)
    else:
        raise NotImplementedError
    loader_test = DataLoader(dataset_test,
                             batch_size=batch_size,
                             shuffle=False)

    # Load model
    if data == 'mnist':
        model = BaseModel(use_prob=False).to(device)
        n_features = (1, 28, 28)
        pretrained = 'mnist_200.pt'
    elif data == 'cifar10':
        n_features = (3, 32, 32)
        if model_name == 'resnet':
            model = Resnet(use_prob=False).to(device)
            pretrained = 'cifar10_resnet_200.pt'
        elif model_name == 'vgg':
            model = Vgg(use_prob=False).to(device)
            pretrained = 'cifar10_vgg_200.pt'
        else:
            raise NotImplementedError
    else:
        raise NotImplementedError

    pretrained_path = os.path.join(path_output, pretrained)
    model.load_state_dict(torch.load(pretrained_path, map_location=device))
    optimizer = optim.SGD(model.parameters(),
                          lr=0.01,
                          momentum=0.9,
                          weight_decay=5e-4)
    loss = nn.CrossEntropyLoss()
    _, acc_test = validate(model, loader_test, loss, device)
    print('Accuracy on test set: {:.4f}%'.format(acc_test * 100))

    tensor_test_X, tensor_test_y = get_correct_examples(model,
                                                        dataset_test,
                                                        device=device,
                                                        return_tensor=True)
    # Get samples from the tail
    if not is_test:
        # This is for training the surrogate model
        tensor_test_X = tensor_test_X[-n_samples:]
        tensor_test_y = tensor_test_y[-n_samples:]
    else:
        # This is for testing the surrogate model
        tensor_test_X = tensor_test_X[-n_samples - 2000:-2000]
        tensor_test_y = tensor_test_y[-n_samples - 2000:-2000]
    dataset_test = TensorDataset(tensor_test_X, tensor_test_y)
    loader_test = DataLoader(dataset_test,
                             batch_size=batch_size,
                             shuffle=False)
    _, acc_perfect = validate(model, loader_test, loss, device)
    print('Accuracy on {} filtered test set: {:.4f}%'.format(
        len(dataset_test), acc_perfect * 100))

    classifier = PyTorchClassifier(model=model,
                                   loss=loss,
                                   input_shape=n_features,
                                   optimizer=optimizer,
                                   nb_classes=10,
                                   clip_values=(0.0, 1.0),
                                   device_type='gpu')
    attack = AutoProjectedGradientDescent(estimator=classifier,
                                          eps=eps,
                                          eps_step=0.1,
                                          max_iter=1000,
                                          batch_size=batch_size,
                                          targeted=False)

    X_benign = tensor_test_X.cpu().detach().numpy()
    y_true = tensor_test_y.cpu().detach().numpy()
    adv = attack.generate(x=X_benign)
    pred_adv = np.argmax(classifier.predict(adv), axis=1)
    acc_adv = np.mean(pred_adv == y_true)
    print("Accuracy on adversarial examples: {:.4f}%".format(acc_adv * 100))

    if not is_test:
        output_file = '{}_{}_baard_surro_train_eps{}_size{}.pt'.format(
            data, model_name, eps, n_samples)
    else:
        output_file = '{}_{}_baard_surro_test_eps{}_size{}.pt'.format(
            data, model_name, eps, n_samples)
    file_path = os.path.join(path_output, output_file)
    output = {'X': X_benign, 'adv': adv, 'y': y_true}
    torch.save(output, file_path)
    print('Save to:', file_path)
コード例 #6
0
ファイル: run_attack.py プロジェクト: changx03/baard_exp2
def run_attack_untargeted(file_model, X, y, att_name, eps, device):
    path = file_model.split('/')[0]
    file_str = file_model.split('/')[-1]
    name_arr = file_str.split('_')
    data = name_arr[0]
    model_name = name_arr[1]
    file_data = os.path.join(
        path, '{}_{}_{}_{}.pt'.format(data, model_name, att_name,
                                      round(eps * 1000)))

    if os.path.exists(file_data):
        print('Found existing file:', file_data)
        obj = torch.load(file_data)
        return obj['adv'], obj['X'], obj['y']

    if data == 'mnist':
        n_features = (1, 28, 28)
        n_classes = 10
        model = BaseModel(use_prob=False).to(device)
    elif data == 'cifar10':
        n_features = (3, 32, 32)
        n_classes = 10
        if model_name == 'resnet':
            model = Resnet(use_prob=False).to(device)
        elif model_name == 'vgg':
            model = Vgg(use_prob=False).to(device)
        else:
            raise NotImplementedError
    else:
        raise NotImplementedError

    model.load_state_dict(torch.load(file_model, map_location=device))
    loss = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(),
                          lr=0.01,
                          momentum=0.9,
                          weight_decay=5e-4)
    classifier = PyTorchClassifier(model=model,
                                   loss=loss,
                                   input_shape=n_features,
                                   optimizer=optimizer,
                                   nb_classes=n_classes,
                                   clip_values=(0.0, 1.0),
                                   device_type='gpu')

    if att_name == 'apgd':
        eps_step = eps / 4. if eps <= 0.2 else 0.1
        attack = AutoProjectedGradientDescent(estimator=classifier,
                                              eps=eps,
                                              eps_step=eps_step,
                                              max_iter=1000,
                                              batch_size=BATCH_SIZE,
                                              targeted=False)
    elif att_name == 'apgd2':
        attack = AutoProjectedGradientDescent(estimator=classifier,
                                              norm=2,
                                              eps=eps,
                                              eps_step=0.1,
                                              max_iter=1000,
                                              batch_size=BATCH_SIZE,
                                              targeted=False)
    elif att_name == 'cw2':
        # Do not increase the batch_size
        attack = CarliniWagnerAttackL2(model=model,
                                       n_classes=n_classes,
                                       confidence=eps,
                                       verbose=True,
                                       check_prob=False,
                                       batch_size=32,
                                       targeted=False)
    elif att_name == 'deepfool':
        # Do not adjust Epsilon
        attack = DeepFool(classifier=classifier, batch_size=BATCH_SIZE)
    elif att_name == 'fgsm':
        attack = FastGradientMethod(estimator=classifier,
                                    eps=eps,
                                    batch_size=BATCH_SIZE)
    elif att_name == 'line':
        attack = LineAttack(color=1, thickness=2)
    else:
        raise NotImplementedError

    time_start = time.time()
    adv = attack.generate(x=X)
    time_elapsed = time.time() - time_start
    print('Total run time:', str(datetime.timedelta(seconds=time_elapsed)))

    obj = {'X': X, 'y': y, 'adv': adv}
    torch.save(obj, file_data)
    print('Save data to:', file_data)

    return adv, X, y
コード例 #7
0
def main():
    Ad = np.load(AD_MAT_FILE)  # Load adjacency matrix
    NUM_TEST = 50
    NUM_GRAPH = 200
    array_std, array_mean_values, array_overlap_ratio = load_raw_result_csv(
        RAW_RESULT_FILE)
    NUM_CLASS = array_mean_values.shape[1]
    print(array_mean_values.shape)
    with open("result_PGD.csv", "w", newline='') as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow([
            "overlap ratio", "acc_test_L", "acc_test_WL", "acc_adv_with_Lip",
            "acc_adv_without_Lip"
        ])
    for i in range(NUM_TEST):
        x_test, y_test = reconstruct_test_data(array_std[i],
                                               array_mean_values[i], Ad,
                                               NUM_GRAPH)
        model_with_Lip_constr = tf.keras.models.load_model(
            "saved_model/fit{}_model_with_Lip_constr.h5".format(i))
        print(model_with_Lip_constr.summary())
        model_without_Lip_constr = tf.keras.models.load_model(
            "saved_model/fit{}_model_without_Lip_constr.h5".format(i))

        print(
            "Evaluation of model WITH Lipschitz constant constraint on TEST data"
        )
        loss_test_L, acc_test_L = model_with_Lip_constr.evaluate(
            x_test, y_test, batch_size=x_test.shape[0], verbose=0)
        print("Loss: {:.4f}, accuracy: {:.4f}".format(loss_test_L, acc_test_L))

        print(
            "Evaluation of model WITHOUT Lipschitz constant constraint on TEST data"
        )
        loss_test_WL, acc_test_WL = model_without_Lip_constr.evaluate(
            x_test, y_test, batch_size=x_test.shape[0], verbose=0)
        print("Loss: {:.4f}, accuracy: {:.4f}".format(loss_test_WL,
                                                      acc_test_WL))

        # Reshape model output
        reshape_with_Lip = Reshape(
            (x_test.shape[1] * NUM_CLASS, ),
            name="added_reshape_layer_L")(model_with_Lip_constr.output)
        new_model_with_Lip = Model(inputs=model_with_Lip_constr.input,
                                   outputs=reshape_with_Lip)
        reshape_without_Lip = Reshape(
            (x_test.shape[1] * NUM_CLASS, ),
            name="added_reshape_layer_WL")(model_without_Lip_constr.output)
        new_model_without_Lip = Model(inputs=model_without_Lip_constr.input,
                                      outputs=reshape_without_Lip)
        new_model_with_Lip.compile(loss='categorical_crossentropy',
                                   optimizer='adam',
                                   metrics=['accuracy'])
        new_model_without_Lip.compile(loss='categorical_crossentropy',
                                      optimizer='adam',
                                      metrics=['accuracy'])
        min_value = np.min(array_mean_values[i]) - 100 * array_std[i]
        max_value = np.max(array_mean_values[i]) + 100 * array_std[i]
        classifier_with_Lip = KerasClassifier(model=new_model_with_Lip,
                                              clip_values=(min_value,
                                                           max_value),
                                              use_logits=False)
        classifier_without_Lip = KerasClassifier(model=new_model_without_Lip,
                                                 clip_values=(min_value,
                                                              max_value),
                                                 use_logits=False)
        attack1 = AutoProjectedGradientDescent(estimator=classifier_with_Lip,
                                               norm="inf",
                                               eps=0.6,
                                               eps_step=1,
                                               batch_size=200,
                                               nb_random_init=5,
                                               verbose=True,
                                               targeted=False)
        attack2 = AutoProjectedGradientDescent(
            estimator=classifier_without_Lip,
            norm="inf",
            eps=0.6,
            eps_step=1,
            batch_size=200,
            nb_random_init=5,
            verbose=True,
            targeted=False)

        x_test_adv1 = attack1.generate(x=x_test,
                                       mask=np.ones((1, x_test.shape[1],
                                                     x_test.shape[2])))
        x_test_adv2 = attack2.generate(x=x_test,
                                       mask=np.ones((1, x_test.shape[1],
                                                     x_test.shape[2])))
        y_predict_adv_with_Lip = classifier_with_Lip.predict(x_test_adv1)
        y_predict_adv_without_Lip = classifier_without_Lip.predict(x_test_adv2)

        y_predict_adv_with_Lip = y_predict_adv_with_Lip.reshape((y_test.shape))
        y_predict_adv_without_Lip = y_predict_adv_without_Lip.reshape(
            (y_test.shape))
        acc_adv_with_Lip = np.sum(
            np.argmax(y_predict_adv_with_Lip, axis=2) == np.argmax(
                y_test, axis=2)) / (y_test.shape[0] * y_test.shape[1])
        print(
            "Accuracy on adversarial test examples with Lipschitz constraint: {:.2f}%"
            .format(acc_adv_with_Lip * 100))
        acc_adv_without_Lip = np.sum(
            np.argmax(y_predict_adv_without_Lip, axis=2) == np.argmax(
                y_test, axis=2)) / (y_test.shape[0] * y_test.shape[1])
        print(
            "Accuracy on adversarial test examples without Lipschitz constraint: {:.2f}%"
            .format(acc_adv_without_Lip * 100))

        with open("result_PGD.csv", "a", newline='') as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow([
                array_overlap_ratio[i], acc_test_L, acc_test_WL,
                acc_adv_with_Lip, acc_adv_without_Lip
            ])