コード例 #1
0
def test_check_params(art_warning, image_dl_estimator_for_attack):
    try:
        from art.attacks.evasion import FastGradientMethod

        classifier = image_dl_estimator_for_attack(FrameSaliencyAttack, from_logits=True)

        attacker = FastGradientMethod(estimator=classifier)

        with pytest.raises(ValueError):
            _ = FrameSaliencyAttack(classifier, attacker="attack")

        with pytest.raises(ValueError):
            _ = FrameSaliencyAttack(classifier, attacker=attacker, method="test")

        with pytest.raises(ValueError):
            _ = FrameSaliencyAttack(classifier, attacker=attacker, frame_index=0)

        with pytest.raises(ValueError):
            _ = FrameSaliencyAttack(classifier, attacker=attacker, batch_size=-1)

        with pytest.raises(ValueError):
            _ = FrameSaliencyAttack(classifier, attacker=attacker, verbose="true")

    except ARTTestException as e:
        art_warning(e)
コード例 #2
0
def test_iterative_saliency(art_warning, fix_get_mnist_subset,
                            image_dl_estimator_for_attack):
    try:
        classifier = image_dl_estimator_for_attack(FastGradientMethod)

        expected_values_axis_1 = {
            "nb_perturbed_frames":
            ExpectedValue(np.asarray([10, 1, 2, 12, 16, 1, 2, 7, 4, 11, 5]), 2)
        }

        expected_values_axis_2 = {
            "nb_perturbed_frames":
            ExpectedValue(np.asarray([11, 1, 2, 6, 14, 2, 2, 13, 4, 8, 4]), 2)
        }

        attacker = FastGradientMethod(classifier, eps=0.3, batch_size=128)
        attack = FrameSaliencyAttack(classifier, attacker,
                                     "iterative_saliency")
        backend_check_adverse_frames(attack, fix_get_mnist_subset,
                                     expected_values_axis_1)

        # test with non-default frame index:
        attack = FrameSaliencyAttack(classifier,
                                     attacker,
                                     "iterative_saliency",
                                     frame_index=2)
        backend_check_adverse_frames(attack, fix_get_mnist_subset,
                                     expected_values_axis_2)
    except ARTTestException as e:
        art_warning(e)
コード例 #3
0
def test_iterative_saliency(fix_get_mnist_subset,
                            image_dl_estimator_for_attack):
    classifier_list = image_dl_estimator_for_attack(FastGradientMethod)
    # TODO this if statement must be removed once we have a classifier for both image and tabular data
    if classifier_list is None:
        logging.warning(
            "Couldn't perform  this test because no classifier is defined")
        return

    expected_values_axis_1 = {
        "nb_perturbed_frames":
        ExpectedValue(np.asarray([10, 1, 2, 12, 16, 1, 2, 7, 4, 11, 5]), 2)
    }

    expected_values_axis_2 = {
        "nb_perturbed_frames":
        ExpectedValue(np.asarray([11, 1, 2, 6, 14, 2, 2, 13, 4, 8, 4]), 2)
    }

    for classifier in classifier_list:
        attacker = FastGradientMethod(classifier, eps=0.3, batch_size=128)
        attack = FrameSaliencyAttack(classifier, attacker,
                                     "iterative_saliency")
        backend_check_adverse_frames(attack, fix_get_mnist_subset,
                                     expected_values_axis_1)

        # test with non-default frame index:
        attack = FrameSaliencyAttack(classifier,
                                     attacker,
                                     "iterative_saliency",
                                     frame_index=2)
        backend_check_adverse_frames(attack, fix_get_mnist_subset,
                                     expected_values_axis_2)
コード例 #4
0
ファイル: frame.py プロジェクト: zhaohengz/armory
def get_frame_saliency(classifier, inner_config=None, **kwargs):
    from art.attacks.evasion import FrameSaliencyAttack
    from armory.utils import config_loading

    attacker = config_loading.load_attack(inner_config, classifier)
    attack = FrameSaliencyAttack(classifier, attacker, **kwargs)
    return attack
コード例 #5
0
def test_one_shot(fix_get_mnist_subset, image_dl_estimator_for_attack):
    classifier_list = image_dl_estimator_for_attack(FastGradientMethod)
    # TODO this if statement must be removed once we have a classifier for both image and tabular data
    if classifier_list is None:
        logging.warning(
            "Couldn't perform  this test because no classifier is defined")
        return

    # for the one-shot method, frame saliency attack should resort to plain FastGradientMethod
    expected_values = {
        "x_test_mean":
        ExpectedValue(0.2346725, 0.002),
        "x_test_min":
        ExpectedValue(-1.0, 0.00001),
        "x_test_max":
        ExpectedValue(1.0, 0.00001),
        "y_test_pred_adv_expected":
        ExpectedValue(np.asarray([4, 4, 4, 7, 7, 4, 7, 2, 2, 3, 0]), 2),
    }

    for classifier in classifier_list:
        attacker = FastGradientMethod(classifier, eps=1, batch_size=128)
        attack = FrameSaliencyAttack(classifier, attacker, "one_shot")
        backend_check_adverse_values(attack, fix_get_mnist_subset,
                                     expected_values)
コード例 #6
0
def test_one_shot(art_warning, fix_get_mnist_subset, image_dl_estimator_for_attack):
    try:
        classifier = image_dl_estimator_for_attack(FastGradientMethod)

        # for the one-shot method, frame saliency attack should resort to plain FastGradientMethod
        expected_values = {
            "x_test_mean": ExpectedValue(0.2346725, 0.002),
            "x_test_min": ExpectedValue(-1.0, 0.00001),
            "x_test_max": ExpectedValue(1.0, 0.00001),
            "y_test_pred_adv_expected": ExpectedValue(np.asarray([4, 4, 4, 7, 7, 4, 7, 2, 2, 3, 0]), 2),
        }

        attacker = FastGradientMethod(classifier, eps=1.0, batch_size=128)
        attack = FrameSaliencyAttack(classifier, attacker, "one_shot")
        backend_check_adverse_values(attack, fix_get_mnist_subset, expected_values)
    except ARTTestException as e:
        art_warning(e)
コード例 #7
0
model_path = ""
# load model here

# Step 3: Create the ART classifier

classifier = TensorFlowClassifier(model=model_path, )

# Step 4: Train the ART classifier

classifier.fit(x_train, y_train, batch_size=4, nb_epochs=3)

# Step 5: Evaluate the ART classifier on benign test examples

predictions = classifier.predict(x_test)
accuracy = np.sum(
    np.argmax(predictions, axis=1) == np.argmax(y_test, axis=1)) / len(y_test)
print("Accuracy on benign test examples: {}%".format(accuracy * 100))

# Step 6: Generate adversarial test examples
attack = FrameSaliencyAttack(classifier=classifier,
                             attacker=FastGradientMethod(estimator=classifier),
                             method="iterative_saliency",
                             frame_index=2,
                             batch_size=4)
x_test_adv = attack.generate(x=x_test)

# Step 7: Evaluate the ART classifier on adversarial test examples
predictions = classifier.predict(x_test_adv)
accuracy = np.sum(
    np.argmax(predictions, axis=1) == np.argmax(y_test, axis=1)) / len(y_test)
print("Accuracy on adversarial test examples: {}%".format(accuracy * 100))