def test_two_attacks(self): (x_train, y_train), (x_test, y_test) = self.mnist x_test_original = x_test.copy() attack1 = FastGradientMethod(estimator=self.classifier, batch_size=16) attack2 = DeepFool(classifier=self.classifier, max_iter=5, batch_size=16) x_test_adv = attack1.generate(x_test) predictions = np.argmax(self.classifier.predict(x_test_adv), axis=1) accuracy = np.sum(predictions == np.argmax(y_test, axis=1)) / NB_TEST adv_trainer = AdversarialTrainer(self.classifier, attacks=[attack1, attack2]) adv_trainer.fit(x_train, y_train, nb_epochs=2, batch_size=16) predictions_new = np.argmax(adv_trainer.predict(x_test_adv), axis=1) accuracy_new = np.sum( predictions_new == np.argmax(y_test, axis=1)) / NB_TEST self.assertEqual(accuracy_new, 0.36) self.assertEqual(accuracy, 0.13) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001)
def test_two_attacks_with_generator(self): (x_train, y_train), (x_test, y_test) = self.mnist x_train_original = x_train.copy() x_test_original = x_test.copy() class MyDataGenerator(DataGenerator): def __init__(self, x, y, size, batch_size): super().__init__(size=size, batch_size=batch_size) self.x = x self.y = y self._size = size self._batch_size = batch_size def get_batch(self): ids = np.random.choice(self.size, size=min(self.size, self.batch_size), replace=False) return self.x[ids], self.y[ids] generator = MyDataGenerator(x_train, y_train, size=x_train.shape[0], batch_size=16) attack1 = FastGradientMethod(estimator=self.classifier, batch_size=16) attack2 = DeepFool(classifier=self.classifier, max_iter=5, batch_size=16) x_test_adv = attack1.generate(x_test) predictions = np.argmax(self.classifier.predict(x_test_adv), axis=1) accuracy = np.sum(predictions == np.argmax(y_test, axis=1)) / NB_TEST adv_trainer = AdversarialTrainer(self.classifier, attacks=[attack1, attack2]) adv_trainer.fit_generator(generator, nb_epochs=3) predictions_new = np.argmax(adv_trainer.predict(x_test_adv), axis=1) accuracy_new = np.sum( predictions_new == np.argmax(y_test, axis=1)) / NB_TEST self.assertAlmostEqual(accuracy_new, 0.25, delta=0.02) self.assertAlmostEqual(accuracy, 0.11, delta=0.0) # Check that x_train and x_test has not been modified by attack and classifier self.assertAlmostEqual(float(np.max(np.abs(x_train_original - x_train))), 0.0, delta=0.00001) self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001)
def test_fit_predict_different_classifiers(self): (x_train, y_train), (x_test, y_test) = self.mnist x_test_original = x_test.copy() attack = FastGradientMethod(self.classifier) x_test_adv = attack.generate(x_test) predictions = np.argmax(self.classifier.predict(x_test_adv), axis=1) accuracy = np.sum(predictions == np.argmax(y_test, axis=1)) / NB_TEST adv_trainer = AdversarialTrainer(self.classifier_2, attack) adv_trainer.fit(x_train, y_train, nb_epochs=5, batch_size=128) predictions_new = np.argmax(adv_trainer.predict(x_test_adv), axis=1) accuracy_new = np.sum( predictions_new == np.argmax(y_test, axis=1)) / NB_TEST self.assertEqual(accuracy_new, 0.32) self.assertEqual(accuracy, 0.13) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001) # fit_generator class MyDataGenerator(DataGenerator): def __init__(self, x, y, size, batch_size): super().__init__(size=size, batch_size=batch_size) self.x = x self.y = y self._size = size self._batch_size = batch_size def get_batch(self): ids = np.random.choice(self.size, size=min(self.size, self.batch_size), replace=False) return self.x[ids], self.y[ids] generator = MyDataGenerator(x_train, y_train, size=x_train.shape[0], batch_size=16) adv_trainer.fit_generator(generator, nb_epochs=5) adv_trainer_2 = AdversarialTrainer(self.classifier_2, attack, ratio=1.0) adv_trainer_2.fit_generator(generator, nb_epochs=5)
def test_fit_predict(self): (x_train, y_train), (x_test, y_test) = self.mnist x_test_original = x_test.copy() attack = FastGradientMethod(self.classifier) x_test_adv = attack.generate(x_test) predictions = np.argmax(self.classifier.predict(x_test_adv), axis=1) accuracy = np.sum(predictions == np.argmax(y_test, axis=1)) / NB_TEST adv_trainer = AdversarialTrainer(self.classifier, attack) adv_trainer.fit(x_train, y_train, nb_epochs=5, batch_size=128) predictions_new = np.argmax(adv_trainer.predict(x_test_adv), axis=1) accuracy_new = np.sum( predictions_new == np.argmax(y_test, axis=1)) / NB_TEST self.assertEqual(accuracy_new, 0.12) self.assertEqual(accuracy, 0.13) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001)