コード例 #1
0
ファイル: stm.py プロジェクト: lqcata/ase
class STM:
    def __init__(self,
                 h1,
                 s1,
                 h2,
                 s2,
                 h10,
                 s10,
                 h20,
                 s20,
                 eta1,
                 eta2,
                 w=0.5,
                 pdos=[],
                 logfile=None):
        """XXX
        
        1. Tip
        2. Surface
        
        h1: ndarray
            Hamiltonian and overlap matrix for the isolated tip
            calculation.  Note, h1 should contain (at least) one
            principal layer.

        h2: ndarray
            Same as h1 but for the surface.

        h10: ndarray
            periodic part of the tip. must include two and only
            two principal layers.

        h20: ndarray
            same as h10, but for the surface

        The s* are the corresponding overlap matrices.  eta1, and eta
        2 are (finite) infinitesimals.  """

        self.pl1 = len(h10) // 2  #principal layer size for the tip
        self.pl2 = len(h20) // 2  #principal layer size for the surface
        self.h1 = h1
        self.s1 = s1
        self.h2 = h2
        self.s2 = s2
        self.h10 = h10
        self.s10 = s10
        self.h20 = h20
        self.s20 = s20
        self.eta1 = eta1
        self.eta2 = eta2
        self.w = w  #asymmetry of the applied bias (0.5=>symmetric)
        self.pdos = []
        self.log = logfile

    def initialize(self, energies, bias=0):
        """
            energies: list of energies 
            for which the transmission function should be evaluated.
            bias.
            Will precalculate the surface greenfunctions of the tip and
            surface.
        """
        self.bias = bias
        self.energies = energies
        nenergies = len(energies)
        pl1, pl2 = self.pl1, self.pl2
        nbf1, nbf2 = len(self.h1), len(self.h2)

        #periodic part of the tip
        hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1]
        hs1_dij = self.h10[:pl1, pl1:2 * pl1], self.s10[:pl1, pl1:2 * pl1]
        #coupling betwen per. and non. per part of the tip
        h1_im = np.zeros((pl1, nbf1), complex)
        s1_im = np.zeros((pl1, nbf1), complex)
        h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij
        hs1_dim = [h1_im, s1_im]

        #periodic part the surface
        hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2]
        hs2_dij = self.h20[pl2:2 * pl2, :pl2], self.s20[pl2:2 * pl2, :pl2]
        #coupling betwen per. and non. per part of the surface
        h2_im = np.zeros((pl2, nbf2), complex)
        s2_im = np.zeros((pl2, nbf2), complex)
        h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij
        hs2_dim = [h2_im, s2_im]

        #tip and surface greenfunction
        self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1)
        self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2)
        self.greenfunction1 = GreenFunction(
            self.h1 - self.bias * self.w * self.s1, self.s1,
            [self.selfenergy1], self.eta1)
        self.greenfunction2 = GreenFunction(
            self.h2 - self.bias * (self.w - 1) * self.s2, self.s2,
            [self.selfenergy2], self.eta2)

        #Shift the bands due to the bias.
        bias_shift1 = -bias * self.w
        bias_shift2 = -bias * (self.w - 1)
        self.selfenergy1.set_bias(bias_shift1)
        self.selfenergy2.set_bias(bias_shift2)

        #tip and surface greenfunction matrices.
        nbf1_small = nbf1  #XXX Change this for efficiency in the future
        nbf2_small = nbf2  #XXX -||-
        coupling_list1 = range(nbf1_small)  # XXX -||-
        coupling_list2 = range(nbf2_small)  # XXX -||-
        self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex)
        self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex)

        for e, energy in enumerate(self.energies):
            if self.log != None:  # and world.rank == 0:
                T = time.localtime()
                self.log.write(' %d:%02d:%02d, ' % (T[3], T[4], T[5]) +
                               '%d, %d, %02f\n' % (world.rank, e, energy))
            gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
            gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)

            gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
            gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)

            self.gft1_emm[e] = gft1_mm
            self.gft2_emm[e] = gft2_mm

            if self.log != None and world.rank == 0:
                self.log.flush()

    def get_transmission(self, v_12, v_11_2=None, v_22_1=None):
        """XXX

        v_12:
            coupling between tip and surface 
        v_11_2:
            correction to "on-site" tip elements due to the 
            surface (eq.16). Is only included to first order.
        v_22_1:
            corretion to "on-site" surface elements due to he
            tip (eq.17). Is only included to first order.
        """

        dim0 = v_12.shape[0]
        dim1 = v_12.shape[1]

        nenergies = len(self.energies)
        T_e = np.empty(nenergies, float)
        v_21 = dagger(v_12)
        for e, energy in enumerate(self.energies):
            gft1 = self.gft1_emm[e]
            if v_11_2 != None:
                gf1 = np.dot(v_11_2, np.dot(gft1, v_11_2))
                gf1 += gft1  #eq. 16
            else:
                gf1 = gft1

            gft2 = self.gft2_emm[e]
            if v_22_1 != None:
                gf2 = np.dot(v_22_1, np.dot(gft2, v_22_1))
                gf2 += gft2  #eq. 17
            else:
                gf2 = gft2

            a1 = (gf1 - dagger(gf1))
            a2 = (gf2 - dagger(gf2))
            self.v_12 = v_12
            self.a2 = a2
            self.v_21 = v_21
            self.a1 = a1
            v12_a2 = np.dot(v_12, a2[:dim1])
            v21_a1 = np.dot(v_21, a1[-dim0:])
            self.v12_a2 = v12_a2
            self.v21_a1 = v21_a1
            T = -np.trace(np.dot(v12_a2[:, :dim1], v21_a1[:, -dim0:]))  #eq. 11
            assert abs(T.imag).max() < 1e-14
            T_e[e] = T.real
            self.T_e = T_e
        return T_e

    def get_current(self, bias, v_12, v_11_2=None, v_22_1=None):
        """Very simple function to calculate the current.
        
        Asummes zero temperature.

        bias: type? XXX
            bias voltage (V)
            
        v_12: XXX
            coupling between tip and surface.
            
        v_11_2:
            correction to onsite elements of the tip
            due to the potential of the surface.
        v_22_1:
            correction to onsite elements of the surface
            due to the potential of the tip.
        """
        energies = self.energies
        T_e = self.get_transmission(v_12, v_11_2, v_22_1)
        bias_window = -np.array([bias * self.w, bias * (self.w - 1)])
        bias_window.sort()
        self.bias_window = bias_window
        #print 'bias window', np.around(bias_window,3)
        #print 'Shift of tip lead do to the bias:', self.selfenergy1.bias
        #print 'Shift of surface lead do to the bias:', self.selfenergy2.bias
        i1 = sum(energies < bias_window[0])
        i2 = sum(energies < bias_window[1])
        step = 1
        if i2 < i1:
            step = -1

        return np.sign(bias) * np.trapz(x=energies[i1:i2:step],
                                        y=T_e[i1:i2:step])
コード例 #2
0
ファイル: stm.py プロジェクト: freephys/python_ase
class STM:
    def __init__(self, h1, s1, h2, s2, h10, s10, h20, s20, eta1, eta2, w=0.5):
        """XXX
        
        1. Tip
        2. Surface
        
        h1: ndarray
            Hamiltonian and overlap matrix for the isolated tip
            calculation.  Note, h1 should contain (at least) one
            principal layer.

        h2: ndarray
            Same as h1 but for the surface.

        h10: ndarray
            periodic part of the tip. must include two and only
            two principal layers.

        h20: ndarray
            same as h10, but for the surface

        The s* are the corresponding overlap matrices.  eta1, and eta
        2 are (finite) infinitesimals.  """

        self.pl1 = len(h10) / 2  # principal layer size for the tip
        self.pl2 = len(h20) / 2  # principal layer size for the surface
        self.h1 = h1
        self.s1 = s1
        self.h2 = h2
        self.s2 = s2
        self.h10 = h10
        self.s10 = s10
        self.h20 = h20
        self.s20 = s20
        self.eta1 = eta1
        self.eta2 = eta2
        self.w = w  # asymmetry of the applied bias (0.5=>symmetric)

    def initialize(self, energies, bias=0):
        """
            energies: list of energies 
            for which the transmission function should be evaluated.
            bias.
            Will precalculate the surface greenfunctions of the tip and
            surface.
        """
        self.bias = bias
        self.energies = energies
        nenergies = len(energies)
        pl1, pl2 = self.pl1, self.pl2
        nbf1, nbf2 = len(self.h1), len(self.h2)

        # periodic part of the tip
        hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1]
        hs1_dij = self.h10[:pl1, pl1 : 2 * pl1], self.s10[:pl1, pl1 : 2 * pl1]
        # coupling betwen per. and non. per part of the tip
        h1_im = np.zeros((pl1, nbf1), complex)
        s1_im = np.zeros((pl1, nbf1), complex)
        h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij
        hs1_dim = [h1_im, s1_im]

        # periodic part the surface
        hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2]
        hs2_dij = self.h20[pl2 : 2 * pl2, :pl2], self.s20[pl2 : 2 * pl2, :pl2]
        # coupling betwen per. and non. per part of the surface
        h2_im = np.zeros((pl2, nbf2), complex)
        s2_im = np.zeros((pl2, nbf2), complex)
        h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij
        hs2_dim = [h2_im, s2_im]

        # tip and surface greenfunction
        self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1)
        self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2)
        self.greenfunction1 = GreenFunction(
            self.h1 - self.bias * self.w * self.s1, self.s1, [self.selfenergy1], self.eta1
        )
        self.greenfunction2 = GreenFunction(
            self.h2 - self.bias * (self.w - 1) * self.s2, self.s2, [self.selfenergy2], self.eta2
        )

        # Shift the bands due to the bias.
        bias_shift1 = -bias * self.w
        bias_shift2 = -bias * (self.w - 1)
        self.selfenergy1.set_bias(bias_shift1)
        self.selfenergy2.set_bias(bias_shift2)

        # tip and surface greenfunction matrices.
        nbf1_small = nbf1  # XXX Change this for efficiency in the future
        nbf2_small = nbf2  # XXX -||-
        coupling_list1 = range(nbf1_small)  # XXX -||-
        coupling_list2 = range(nbf2_small)  # XXX -||-
        self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex)
        self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex)

        for e, energy in enumerate(self.energies):
            gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
            gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)

            gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
            gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)

            self.gft1_emm[e] = gft1_mm
            self.gft2_emm[e] = gft2_mm

    def get_transmission(self, v_12, v_11_2=None, v_22_1=None):
        """XXX

        v_12:
            coupling between tip and surface 
        v_11_2:
            correction to "on-site" tip elements due to the 
            surface (eq.16). Is only included to first order.
        v_22_1:
            corretion to "on-site" surface elements due to he
            tip (eq.17). Is only included to first order.
        """

        dim0 = v_12.shape[0]
        dim1 = v_12.shape[1]

        nenergies = len(self.energies)
        T_e = np.empty(nenergies, float)
        v_21 = dagger(v_12)
        for e, energy in enumerate(self.energies):
            gft1 = self.gft1_emm[e]
            if v_11_2 != None:
                gf1 = np.dot(v_11_2, np.dot(gft1, v_11_2))
                gf1 += gft1  # eq. 16
            else:
                gf1 = gft1

            gft2 = self.gft2_emm[e]
            if v_22_1 != None:
                gf2 = np.dot(v_22_1, np.dot(gft2, v_22_1))
                gf2 += gft2  # eq. 17
            else:
                gf2 = gft2

            a1 = gf1 - dagger(gf1)
            a2 = gf2 - dagger(gf2)
            self.v_12 = v_12
            self.a2 = a2
            self.v_21 = v_21
            self.a1 = a1
            v12_a2 = np.dot(v_12, a2[:dim1])
            v21_a1 = np.dot(v_21, a1[-dim0:])
            self.v12_a2 = v12_a2
            self.v21_a1 = v21_a1
            T = -np.trace(np.dot(v12_a2[:, :dim1], v21_a1[:, -dim0:]))  # eq. 11
            T_e[e] = T
            self.T_e = T_e
        return T_e

    def get_current(self, bias, v_12, v_11_2=None, v_22_1=None):
        """Very simple function to calculate the current.
        
        Asummes zero temperature.

        bias: type? XXX
            bias voltage (V)
            
        v_12: XXX
            coupling between tip and surface.
            
        v_11_2:
            correction to onsite elements of the tip
            due to the potential of the surface.
        v_22_1:
            correction to onsite elements of the surface
            due to the potential of the tip.
        """
        energies = self.energies
        T_e = self.get_transmission(v_12, v_11_2, v_22_1)
        bias_window = -np.array([bias * self.w, bias * (self.w - 1)])
        bias_window.sort()
        self.bias_window = bias_window
        # print 'bias window', np.around(bias_window,3)
        # print 'Shift of tip lead do to the bias:', self.selfenergy1.bias
        # print 'Shift of surface lead do to the bias:', self.selfenergy2.bias
        i1 = sum(energies < bias_window[0])
        i2 = sum(energies < bias_window[1])
        step = 1
        if i2 < i1:
            step = -1

        return np.sign(bias) * np.trapz(x=energies[i1:i2:step], y=T_e[i1:i2:step])