def test_franck_condon(testdir): # FCOverlap fco = FranckCondonOverlap() fcr = FranckCondonRecursive() # check factorial assert (fco.factorial(8) == factorial(8)) # the second test is useful according to the implementation assert (fco.factorial(5) == factorial(5)) assert (fco.factorial.inv(5) == 1. / factorial(5)) # check T=0 and n=0 equality S = np.array([1, 2.1, 34]) m = 5 assert (((fco.directT0(m, S) - fco.direct(0, m, S)) / fco.directT0(m, S) < 1e-15).all()) # check symmetry S = 2 n = 3 assert (fco.direct(n, m, S) == fco.direct(m, n, S)) # --------------------------- # specials S = np.array([0, 1.5]) delta = np.sqrt(2 * S) for m in [2, 7]: equal( fco.direct0mm1(m, S)**2, fco.direct(1, m, S) * fco.direct(m, 0, S), 1.e-17) equal(fco.direct0mm1(m, S), fcr.ov0mm1(m, delta), 1.e-15) equal(fcr.ov0mm1(m, delta), fcr.ov0m(m, delta) * fcr.ov1m(m, delta), 1.e-15) equal(fcr.ov0mm1(m, -delta), fcr.direct0mm1(m, -delta), 1.e-15) equal(fcr.ov0mm1(m, delta), -fcr.direct0mm1(m, -delta), 1.e-15) equal( fco.direct0mm2(m, S)**2, fco.direct(2, m, S) * fco.direct(m, 0, S), 1.e-17) equal(fco.direct0mm2(m, S), fcr.ov0mm2(m, delta), 1.e-15) equal(fcr.ov0mm2(m, delta), fcr.ov0m(m, delta) * fcr.ov2m(m, delta), 1.e-15) equal(fco.direct0mm2(m, S), fcr.direct0mm2(m, delta), 1.e-15) equal(fcr.direct0mm3(m, delta), fcr.ov0m(m, delta) * fcr.ov3m(m, delta), 1.e-15) equal(fcr.ov1mm2(m, delta), fcr.ov1m(m, delta) * fcr.ov2m(m, delta), 1.e-15) equal(fcr.direct1mm2(m, delta), fcr.ov1mm2(m, delta), 1.e-15)
def test_franck_condon(): import sys import numpy as np from ase.vibrations.franck_condon import FranckCondonOverlap, FranckCondonRecursive from math import factorial def equal(x, y, tolerance=0, fail=True, msg=''): """Compare x and y.""" if not np.isfinite(x - y).any() or (np.abs(x - y) > tolerance).any(): msg = (msg + '%s != %s (error: |%s| > %.9g)' % (x, y, x - y, tolerance)) if fail: raise AssertionError(msg) else: sys.stderr.write('WARNING: %s\n' % msg) # FCOverlap fco = FranckCondonOverlap() fcr = FranckCondonRecursive() # check factorial assert(fco.factorial(8) == factorial(8)) # the second test is useful according to the implementation assert(fco.factorial(5) == factorial(5)) assert(fco.factorial.inv(5) == 1. / factorial(5)) # check T=0 and n=0 equality S = np.array([1, 2.1, 34]) m = 5 assert(((fco.directT0(m, S) - fco.direct(0, m, S)) / fco.directT0(m, S) < 1e-15).all()) # check symmetry S = 2 n = 3 assert(fco.direct(n, m, S) == fco.direct(m, n, S)) # --------------------------- # specials S = np.array([0, 1.5]) delta = np.sqrt(2 * S) for m in [2, 7]: equal(fco.direct0mm1(m, S)**2, fco.direct(1, m, S) * fco.direct(m, 0, S), 1.e-17) equal(fco.direct0mm1(m, S), fcr.ov0mm1(m, delta), 1.e-15) equal(fcr.ov0mm1(m, delta), fcr.ov0m(m, delta) * fcr.ov1m(m, delta), 1.e-15) equal(fcr.ov0mm1(m, -delta), fcr.direct0mm1(m, -delta), 1.e-15) equal(fcr.ov0mm1(m, delta), - fcr.direct0mm1(m, -delta), 1.e-15) equal(fco.direct0mm2(m, S)**2, fco.direct(2, m, S) * fco.direct(m, 0, S), 1.e-17) equal(fco.direct0mm2(m, S), fcr.ov0mm2(m, delta), 1.e-15) equal(fcr.ov0mm2(m, delta), fcr.ov0m(m, delta) * fcr.ov2m(m, delta), 1.e-15) equal(fco.direct0mm2(m, S), fcr.direct0mm2(m, delta), 1.e-15) equal(fcr.direct0mm3(m, delta), fcr.ov0m(m, delta) * fcr.ov3m(m, delta), 1.e-15) equal(fcr.ov1mm2(m, delta), fcr.ov1m(m, delta) * fcr.ov2m(m, delta), 1.e-15) equal(fcr.direct1mm2(m, delta), fcr.ov1mm2(m, delta), 1.e-15)
if not np.isfinite(x - y).any() or (np.abs(x - y) > tolerance).any(): msg = (msg + '%s != %s (error: |%s| > %.9g)' % (x, y, x - y, tolerance)) if fail: raise AssertionError(msg) else: sys.stderr.write('WARNING: %s\n' % msg) # FCOverlap fco = FranckCondonOverlap() fcr = FranckCondonRecursive() # check factorial assert (fco.factorial(8) == factorial(8)) # the second test is useful according to the implementation assert (fco.factorial(5) == factorial(5)) assert (fco.factorial.inv(5) == 1. / factorial(5)) # check T=0 and n=0 equality S = np.array([1, 2.1, 34]) m = 5 assert (((fco.directT0(m, S) - fco.direct(0, m, S)) / fco.directT0(m, S) < 1e-15).all()) # check symmetry S = 2 n = 3 assert (fco.direct(n, m, S) == fco.direct(m, n, S))
"""Compare x and y.""" if not np.isfinite(x - y).any() or (np.abs(x - y) > tolerance).any(): msg = (msg + '%s != %s (error: |%s| > %.9g)' % (x, y, x - y, tolerance)) if fail: raise AssertionError(msg) else: sys.stderr.write('WARNING: %s\n' % msg) # FCOverlap fco = FranckCondonOverlap() # check factorial assert(fco.factorial(8) == factorial(8)) # the second test is useful according to the implementation assert(fco.factorial(5) == factorial(5)) # check T=0 and n=0 equality S = np.array([1, 2.1, 34]) m = 5 assert(((fco.directT0(m, S) - fco.direct(0, m, S)) / fco.directT0(m, S) < 1e-15).all()) # check symmetry S = 2 n = 3 assert(fco.direct(n, m, S) == fco.direct(m, n, S)) # ---------------------------