data_analysis_interval: int = 50 save_file_and_plot_update_interval = data_analysis_interval * 1 # data storage settings save_dir_path: str = SystemConfig.FILE_OUTPUT_HOME_DIR + CommonUtil.generate_date_time_str( ) + "_" + Path(__file__).stem is_save_raw_data: bool = True is_save_analytica_data: bool = True is_save_chart_data: bool = True # program execution settings is_print_episode_idx: bool = True user_input_next_operation: str = "fly" game_raw_data: GameRawData = GameRawData() game_raw_data.settings_info_dict["gamma"] = gamma game_raw_data.settings_info_dict["nn_learning_rate"] = nn_learning_rate game_raw_data.settings_info_dict[ "data_analysis_interval"] = data_analysis_interval anay_data: AnalyticalData = AnalyticalData() anay_data.settings_info_dict = game_raw_data.settings_info_dict # anay_data.name_datalist_dict["mean"] = [0] # anay_data.name_datalist_dict["standard_deviation"] = [0] anay_data.time_step_mean_list = [0] anay_data.time_step_std_dev_list = [0] anay_data.reward_mean_list = [0] anay_data.reward_std_dev_list = [0] if is_save_chart_data or is_save_analytica_data:
size = 2 random_sample = random.sample([1, 2, 3, 4], size) print("random_sample", random_sample) file_path: str = "d:/python_write_file_test.txt" initial_epsilon = 0.5 decay = 0.5 episodes_per_drop = 500000 discount_rate = 0.9 learning_rate = 0.2 max_episodes = 10000000 game_data: GameRawData = GameRawData() game_data.add_settings_info("initial_epsilon", initial_epsilon) game_data.add_settings_info("decay", decay) game_data.add_settings_info("episodes_per_drop", episodes_per_drop) game_data.add_settings_info("discount_rate", discount_rate) game_data.add_settings_info("learning_rate", learning_rate) game_data.add_settings_info("max_episodes", max_episodes) # print("game_data.__dict__", game_data.__dict__) # for i in range(0,1000000): # game_data.add_end_step_record(i) # game_data.add_end_reward_record(i) # # file1 = open(file_path,"w") # L = ["This is Delhi \n","This is Paris \n","This is London \n"] #