コード例 #1
0
    def setUp(self):
        n = 32
        L = 8
        filters = [
            RadialCTFFilter(5, 200, defocus=d, Cs=2.0, alpha=0.1)
            for d in np.linspace(1.5e4, 2.5e4, 7)
        ]
        self.dtype = np.float32
        self.noise_var = 0.1848

        # Initial noise filter to generate noise images.
        # Noise variance is set to a value far away that is used to calculate
        # covariance matrix and CWF coefficients in order to check the function
        # for rebuilding positive definite covariance matrix.
        noise_filter = ScalarFilter(dim=2, value=self.noise_var * 0.001)

        self.src = Simulation(L,
                              n,
                              unique_filters=filters,
                              dtype=self.dtype,
                              noise_filter=noise_filter)
        self.basis = FFBBasis2D((L, L), dtype=self.dtype)
        self.coeff = self.basis.evaluate_t(self.src.images(0, self.src.n))

        self.ctf_idx = self.src.filter_indices
        self.ctf_fb = [f.fb_mat(self.basis) for f in self.src.unique_filters]

        self.cov2d = RotCov2D(self.basis)
        self.bcov2d = BatchedRotCov2D(self.src, self.basis, batch_size=7)
コード例 #2
0
    def testMSE(self):
        # need larger numbers of images and higher resolution for good MSE
        dtype = np.float32
        img_size = 64
        num_imgs = 1024
        noise_var = 0.1848
        noise_filter = ScalarFilter(dim=2, value=noise_var)
        filters = [
            RadialCTFFilter(5, 200, defocus=d, Cs=2.0, alpha=0.1)
            for d in np.linspace(1.5e4, 2.5e4, 7)
        ]
        # set simulation object
        sim = Simulation(
            L=img_size,
            n=num_imgs,
            unique_filters=filters,
            offsets=0.0,
            amplitudes=1.0,
            dtype=dtype,
            noise_filter=noise_filter,
        )
        imgs_clean = sim.projections()

        # Specify the fast FB basis method for expending the 2D images
        ffbbasis = FFBBasis2D((img_size, img_size), dtype=dtype)
        denoiser = DenoiserCov2D(sim, ffbbasis, noise_var)
        denoised_src = denoiser.denoise(batch_size=64)
        imgs_denoised = denoised_src.images(0, num_imgs)
        # Calculate the normalized RMSE of the estimated images.
        nrmse_ims = (imgs_denoised - imgs_clean).norm() / imgs_clean.norm()

        self.assertTrue(nrmse_ims < 0.25)
コード例 #3
0
 def setUp(self):
     self.sim = Simulation(n=1024,
                           L=8,
                           filters=[
                               RadialCTFFilter(defocus=d)
                               for d in np.linspace(1.5e4, 2.5e4, 7)
                           ],
                           seed=0,
                           noise_filter=IdentityFilter(),
                           dtype='single')
コード例 #4
0
    def setUp(self):
        self.dtype = np.float32

        L = 8
        n = 32
        pixel_size = 5.0 * 65 / L
        voltage = 200
        defocus_min = 1.5e4
        defocus_max = 2.5e4
        defocus_ct = 7

        self.noise_var = 1.3957e-4
        noise_filter = ScalarFilter(dim=2, value=self.noise_var)

        unique_filters = [
            RadialCTFFilter(pixel_size, voltage, defocus=d, Cs=2.0, alpha=0.1)
            for d in np.linspace(defocus_min, defocus_max, defocus_ct)
        ]

        vols = Volume(
            np.load(os.path.join(DATA_DIR, "clean70SRibosome_vol.npy")).astype(
                self.dtype
            )
        )  # RCOPT
        vols = vols.downsample((L * np.ones(3, dtype=int))) * 1.0e3
        # Since FFBBasis2D doesn't yet implement dtype, we'll set this to double to match its built in types.
        sim = Simulation(
            n=n,
            L=L,
            vols=vols,
            unique_filters=unique_filters,
            offsets=0.0,
            amplitudes=1.0,
            dtype=self.dtype,
            noise_filter=noise_filter,
        )

        self.basis = FFBBasis2D((L, L), dtype=self.dtype)

        self.h_idx = sim.filter_indices
        self.h_ctf_fb = [filt.fb_mat(self.basis) for filt in unique_filters]

        self.imgs_clean = sim.projections()
        self.imgs_ctf_clean = sim.clean_images()
        self.imgs_ctf_noise = sim.images(start=0, num=n)

        self.cov2d = RotCov2D(self.basis)
        self.coeff_clean = self.basis.evaluate_t(self.imgs_clean)
        self.coeff = self.basis.evaluate_t(self.imgs_ctf_noise)
コード例 #5
0
    def setUp(self):
        L = 32
        n = 64
        pixel_size = 5
        voltage = 200
        defocus_min = 1.5e4
        defocus_max = 2.5e4
        defocus_ct = 7
        Cs = 2.0
        alpha = 0.1
        self.dtype = np.float32

        filters = [
            RadialCTFFilter(pixel_size, voltage, defocus=d, Cs=Cs, alpha=alpha)
            for d in np.linspace(defocus_min, defocus_max, defocus_ct)
        ]

        vols = Volume(
            np.load(os.path.join(DATA_DIR, "clean70SRibosome_vol.npy")).astype(
                self.dtype))
        vols = vols.downsample((L * np.ones(3, dtype=int)))

        sim = Simulation(L=L,
                         n=n,
                         vols=vols,
                         unique_filters=filters,
                         dtype=self.dtype)

        self.orient_est = CLSyncVoting(sim, L // 2, 36)
コード例 #6
0
    def setUpClass(cls):
        cls.dtype = np.float32
        cls.sim = Simulation(
            n=1024,
            unique_filters=[
                RadialCTFFilter(defocus=d)
                for d in np.linspace(1.5e4, 2.5e4, 7)
            ],
            dtype=cls.dtype,
        )
        basis = FBBasis3D((8, 8, 8), dtype=cls.dtype)
        cls.noise_variance = 0.0030762743633643615

        cls.mean_estimator = MeanEstimator(cls.sim, basis)
        cls.mean_est = Volume(
            np.load(os.path.join(DATA_DIR,
                                 "mean_8_8_8.npy")).astype(cls.dtype))

        # Passing in a mean_kernel argument to the following constructor speeds up some calculations
        cls.covar_estimator = CovarianceEstimator(
            cls.sim,
            basis,
            mean_kernel=cls.mean_estimator.kernel,
            preconditioner="none")
        cls.covar_estimator_with_preconditioner = CovarianceEstimator(
            cls.sim,
            basis,
            mean_kernel=cls.mean_estimator.kernel,
            preconditioner="circulant",
        )
コード例 #7
0
 def setUp(self):
     self.sim = Simulation(
         n=1024,
         unique_filters=[
             RadialCTFFilter(defocus=d)
             for d in np.linspace(1.5e4, 2.5e4, 7)
         ],
     )
コード例 #8
0
    def setUp(self):
        n = 32
        L = 8

        noise_var = 0.1848

        pixel_size = 5
        voltage = 200
        defocus_min = 1.5e4
        defocus_max = 2.5e4
        defocus_ct = 7
        Cs = 2.0
        alpha = 0.1

        filters = [
            RadialCTFFilter(pixel_size, voltage, defocus=d, Cs=2.0, alpha=0.1)
            for d in np.linspace(defocus_min, defocus_max, defocus_ct)
        ]

        # Since FFBBasis2D doesn't yet implement dtype, we'll set this to double to match its built in types.
        src = Simulation(L, n, filters=filters, dtype='double')

        basis = FFBBasis2D((L, L))

        unique_filters = list(set(src.filters))
        ctf_idx = np.array([unique_filters.index(f) for f in src.filters])

        ctf_fb = [f.fb_mat(basis) for f in unique_filters]

        im = src.images(0, src.n)
        coeff = basis.evaluate_t(im.data).astype(src.dtype)

        cov2d = RotCov2D(basis)
        bcov2d = BatchedRotCov2D(src, basis, batch_size=7)

        self.src = src
        self.basis = basis
        self.ctf_fb = ctf_fb
        self.ctf_idx = ctf_idx

        self.cov2d = cov2d
        self.bcov2d = bcov2d

        self.coeff = coeff
コード例 #9
0
 def setUp(self):
     sim = Simulation(n=1024,
                      filters=[
                          RadialCTFFilter(defocus=d)
                          for d in np.linspace(1.5e4, 2.5e4, 7)
                      ])
     basis = FBBasis3D((8, 8, 8))
     self.estimator = MeanEstimator(sim, basis, preconditioner='none')
     self.estimator_with_preconditioner = MeanEstimator(
         sim, basis, preconditioner='circulant')
コード例 #10
0
    def setUp(self):

        self.L = 64
        self.n = 128
        self.dtype = np.float32
        self.noise_filter = FunctionFilter(
            lambda x, y: np.exp(-(x**2 + y**2) / 2))

        self.sim = Simulation(
            L=self.L,
            n=self.n,
            unique_filters=[
                RadialCTFFilter(defocus=d)
                for d in np.linspace(1.5e4, 2.5e4, 7)
            ],
            noise_filter=self.noise_filter,
            dtype=self.dtype,
        )
        self.imgs_org = self.sim.images(start=0, num=self.n)
コード例 #11
0
 def setUp(self):
     self.dtype = np.float32
     sim = Simulation(
         n=1024,
         unique_filters=[
             RadialCTFFilter(defocus=d) for d in np.linspace(1.5e4, 2.5e4, 7)
         ],
         dtype=self.dtype,
     )
     basis = FBBasis3D((8, 8, 8), dtype=self.dtype)
     self.estimator = MeanEstimator(sim, basis, preconditioner="none")
     self.estimator_with_preconditioner = MeanEstimator(
         sim, basis, preconditioner="circulant"
     )
コード例 #12
0
ファイル: test_covar2d.py プロジェクト: hbrunie/ASPIRE-Python
    def setUp(self):

        L = 8
        n = 32
        C = 1
        SNR = 1
        pixel_size = 5
        voltage = 200
        defocus_min = 1.5e4
        defocus_max = 2.5e4
        defocus_ct = 7
        Cs = 2.0
        alpha = 0.1

        filters = [
            RadialCTFFilter(pixel_size, voltage, defocus=d, Cs=2.0, alpha=0.1)
            for d in np.linspace(defocus_min, defocus_max, defocus_ct)
        ]

        # Since FFBBasis2D doesn't yet implement dtype, we'll set this to double to match its built in types.
        sim = Simulation(n=n, C=C, filters=filters, dtype='double')

        vols = np.load(os.path.join(DATA_DIR, 'clean70SRibosome_vol.npy'))
        vols = vols[..., np.newaxis]
        vols = downsample(vols, (L * np.ones(3, dtype=int)))
        sim.vols = vols

        self.basis = FFBBasis2D((L, L))
        # use new methods to generate random rotations and clean images
        sim.rots = qrand_rots(n, seed=0)
        self.imgs_clean = vol2img(vols[..., 0], sim.rots)

        self.h_idx = np.array([filters.index(f) for f in sim.filters])
        self.filters = filters
        self.h_ctf_fb = [filt.fb_mat(self.basis) for filt in self.filters]

        self.imgs_ctf_clean = sim.eval_filters(self.imgs_clean)

        sim.cache(self.imgs_ctf_clean)

        power_clean = anorm(self.imgs_ctf_clean)**2 / np.size(
            self.imgs_ctf_clean)
        self.noise_var = power_clean / SNR
        self.imgs_ctf_noise = self.imgs_ctf_clean + np.sqrt(
            self.noise_var) * randn(L, L, n, seed=0)

        self.cov2d = RotCov2D(self.basis)
        self.coeff_clean = self.basis.evaluate_t(self.imgs_clean)
        self.coeff = self.basis.evaluate_t(self.imgs_ctf_noise)
コード例 #13
0
    def testDownsample(self):
        # generate a 3D map with density decays as Gaussian function
        g3d = grid_3d(self.L, dtype=self.dtype)
        coords = np.array(
            [g3d["x"].flatten(), g3d["y"].flatten(), g3d["z"].flatten()])
        sigma = 0.2
        vol = np.exp(-0.5 * np.sum(np.abs(coords / sigma)**2, axis=0)).astype(
            self.dtype)
        vol = np.reshape(vol, g3d["x"].shape)
        vols = Volume(vol)

        # set noise to zero and CFT filters to unity for simulation object
        noise_var = 0
        noise_filter = ScalarFilter(dim=2, value=noise_var)
        sim = Simulation(
            L=self.L,
            n=self.n,
            vols=vols,
            offsets=0.0,
            amplitudes=1.0,
            unique_filters=[
                ScalarFilter(dim=2, value=1)
                for d in np.linspace(1.5e4, 2.5e4, 7)
            ],
            noise_filter=noise_filter,
            dtype=self.dtype,
        )
        # get images before downsample
        imgs_org = sim.images(start=0, num=self.n)
        # get images after downsample
        max_resolution = 32
        sim.downsample(max_resolution)
        imgs_ds = sim.images(start=0, num=self.n)

        # Check individual grid points
        self.assertTrue(
            np.allclose(
                imgs_org[:, 32, 32],
                imgs_ds[:, 16, 16],
                atol=utest_tolerance(self.dtype),
            ))
        # check resolution
        self.assertTrue(np.allclose(max_resolution, imgs_ds.shape[1]))
        # check energy conservation after downsample
        self.assertTrue(
            np.allclose(
                anorm(imgs_org.asnumpy(), axes=(1, 2)) / self.L,
                anorm(imgs_ds.asnumpy(), axes=(1, 2)) / max_resolution,
                atol=utest_tolerance(self.dtype),
            ))
コード例 #14
0
    def setUpClass(cls):
        cls.sim = Simulation(n=1024,
                             filters=[
                                 RadialCTFFilter(defocus=d)
                                 for d in np.linspace(1.5e4, 2.5e4, 7)
                             ])
        basis = FBBasis3D((8, 8, 8))
        cls.noise_variance = 0.0030762743633643615

        cls.mean_estimator = MeanEstimator(cls.sim, basis)
        cls.mean_est = np.load(os.path.join(DATA_DIR, 'mean_8_8_8.npy'))

        # Passing in a mean_kernel argument to the following constructor speeds up some calculations
        cls.covar_estimator = CovarianceEstimator(
            cls.sim,
            basis,
            mean_kernel=cls.mean_estimator.kernel,
            preconditioner='none')
        cls.covar_estimator_with_preconditioner = CovarianceEstimator(
            cls.sim,
            basis,
            mean_kernel=cls.mean_estimator.kernel,
            preconditioner='circulant')
コード例 #15
0
class SimTestCase(TestCase):
    def setUp(self):
        self.sim = Simulation(
            n=1024,
            L=8,
            unique_filters=[
                RadialCTFFilter(defocus=d)
                for d in np.linspace(1.5e4, 2.5e4, 7)
            ],
            seed=0,
            noise_filter=IdentityFilter(),
            dtype="single",
        )

    def tearDown(self):
        pass

    def testGaussianBlob(self):
        blobs = self.sim.vols.asnumpy()
        ref = np.load(os.path.join(DATA_DIR, "sim_blobs.npy"))
        self.assertTrue(np.allclose(blobs, ref))

    def testSimulationRots(self):
        self.assertTrue(
            np.allclose(
                self.sim.rots[0, :, :],
                np.array([
                    [0.91675498, 0.2587233, 0.30433956],
                    [0.39941773, -0.58404652, -0.70665065],
                    [-0.00507853, 0.76938412, -0.63876622],
                ]),
            ))

    def testSimulationImages(self):
        images = self.sim.clean_images(0, 512).asnumpy()
        self.assertTrue(
            np.allclose(
                images,
                np.load(os.path.join(DATA_DIR, "sim_clean_images.npy")),
                rtol=1e-2,
                atol=utest_tolerance(self.sim.dtype),
            ))

    def testSimulationImagesNoisy(self):
        images = self.sim.images(0, 512).asnumpy()
        self.assertTrue(
            np.allclose(
                images,
                np.load(os.path.join(DATA_DIR, "sim_images_with_noise.npy")),
                rtol=1e-2,
                atol=utest_tolerance(self.sim.dtype),
            ))

    def testSimulationImagesDownsample(self):
        # The simulation already generates images of size 8 x 8; Downsampling to resolution 8 should thus have no effect
        self.sim.downsample(8)
        images = self.sim.clean_images(0, 512).asnumpy()
        self.assertTrue(
            np.allclose(
                images,
                np.load(os.path.join(DATA_DIR, "sim_clean_images.npy")),
                rtol=1e-2,
                atol=utest_tolerance(self.sim.dtype),
            ))

    def testSimulationImagesShape(self):
        # The 'images' method should be tolerant of bounds - here we ask for 1000 images starting at index 1000,
        # so we'll get back 25 images in return instead
        images = self.sim.images(1000, 1000)
        self.assertTrue(images.shape, (8, 8, 25))

    def testSimulationImagesDownsampleShape(self):
        self.sim.downsample(6)
        first_image = self.sim.images(0, 1)[0]
        self.assertEqual(first_image.shape, (6, 6))

    def testSimulationEigen(self):
        eigs_true, lambdas_true = self.sim.eigs()
        self.assertTrue(
            np.allclose(
                eigs_true[0, :, :, 2],
                np.array([
                    [
                        -1.67666201e-07,
                        -7.95741380e-06,
                        -1.49160041e-04,
                        -1.10151654e-03,
                        -3.11287888e-03,
                        -3.09157884e-03,
                        -9.91418026e-04,
                        -1.31673165e-04,
                    ],
                    [
                        -1.15402077e-06,
                        -2.49849709e-05,
                        -3.51658906e-04,
                        -2.21575261e-03,
                        -7.83315487e-03,
                        -9.44795180e-03,
                        -4.07636259e-03,
                        -9.02186439e-04,
                    ],
                    [
                        -1.88737249e-05,
                        -1.91418396e-04,
                        -1.09021540e-03,
                        -1.02020288e-03,
                        1.39411855e-02,
                        8.58035963e-03,
                        -5.54619730e-03,
                        -3.86377703e-03,
                    ],
                    [
                        -1.21280536e-04,
                        -9.51461843e-04,
                        -3.22565017e-03,
                        -1.05731178e-03,
                        2.61375736e-02,
                        3.11595201e-02,
                        6.40814053e-03,
                        -2.31698658e-02,
                    ],
                    [
                        -2.44067283e-04,
                        -1.40560151e-03,
                        -6.73082832e-05,
                        1.44160679e-02,
                        2.99893934e-02,
                        5.92632964e-02,
                        7.75623545e-02,
                        3.06570008e-02,
                    ],
                    [
                        -1.53507499e-04,
                        -7.21709803e-04,
                        8.54929152e-04,
                        -1.27235036e-02,
                        -5.34382043e-03,
                        2.18879692e-02,
                        6.22706190e-02,
                        4.51998860e-02,
                    ],
                    [
                        -3.00595184e-05,
                        -1.43038429e-04,
                        -2.15870258e-03,
                        -9.99002904e-02,
                        -7.79077187e-02,
                        -1.53395887e-02,
                        1.88777559e-02,
                        1.68759506e-02,
                    ],
                    [
                        3.22692649e-05,
                        4.07977635e-03,
                        1.63959339e-02,
                        -8.68835449e-02,
                        -7.86240026e-02,
                        -1.75694861e-02,
                        3.24984640e-03,
                        1.95389288e-03,
                    ],
                ]),
            ))

    def testSimulationMean(self):
        mean_vol = self.sim.mean_true()
        self.assertTrue(
            np.allclose(
                [
                    [
                        0.00000930,
                        0.00033866,
                        0.00490734,
                        0.01998369,
                        0.03874487,
                        0.04617764,
                        0.02970645,
                        0.00967604,
                    ],
                    [
                        0.00003904,
                        0.00247391,
                        0.03818476,
                        0.12325402,
                        0.22278425,
                        0.25246665,
                        0.14093882,
                        0.03683474,
                    ],
                    [
                        0.00014177,
                        0.01191146,
                        0.14421064,
                        0.38428235,
                        0.78645319,
                        0.86522675,
                        0.44862473,
                        0.16382280,
                    ],
                    [
                        0.00066036,
                        0.03137806,
                        0.29226971,
                        0.97105378,
                        2.39410496,
                        2.17099857,
                        1.23595858,
                        0.49233940,
                    ],
                    [
                        0.00271748,
                        0.05491289,
                        0.49955708,
                        2.05356097,
                        3.70941424,
                        3.01578689,
                        1.51441932,
                        0.52054572,
                    ],
                    [
                        0.00584845,
                        0.06962635,
                        0.50568032,
                        1.99643707,
                        3.77415895,
                        2.76039767,
                        1.04602003,
                        0.20633197,
                    ],
                    [
                        0.00539583,
                        0.06068972,
                        0.47008955,
                        1.17128026,
                        1.82821035,
                        1.18743944,
                        0.30667788,
                        0.04851476,
                    ],
                    [
                        0.00246362,
                        0.04867788,
                        0.65284950,
                        0.65238875,
                        0.65745538,
                        0.37955678,
                        0.08053055,
                        0.01210055,
                    ],
                ],
                mean_vol[0, :, :, 4],
            ))

    def testSimulationVolCoords(self):
        coords, norms, inners = self.sim.vol_coords()
        self.assertTrue(
            np.allclose([4.72837704, -4.72837709], coords, atol=1e-4))
        self.assertTrue(
            np.allclose([8.20515764e-07, 1.17550184e-06], norms, atol=1e-4))
        self.assertTrue(
            np.allclose([3.78030562e-06, -4.20475816e-06], inners, atol=1e-4))

    def testSimulationCovar(self):
        covar = self.sim.covar_true()
        result = [
            [
                -0.00000289,
                -0.00005839,
                -0.00018998,
                -0.00124722,
                -0.00003155,
                +0.00743356,
                +0.00798143,
                +0.00303416,
            ],
            [
                -0.00000776,
                +0.00018371,
                +0.00448675,
                -0.00794970,
                -0.02988000,
                -0.00185446,
                +0.01786612,
                +0.00685990,
            ],
            [
                +0.00001144,
                +0.00324029,
                +0.03364052,
                -0.00272520,
                -0.08976389,
                -0.05404807,
                +0.00268740,
                -0.03081760,
            ],
            [
                +0.00003204,
                +0.00909853,
                +0.07859941,
                +0.07254293,
                -0.19365733,
                -0.09007251,
                -0.15731451,
                -0.15690306,
            ],
            [
                -0.00040561,
                +0.00685139,
                +0.11074986,
                +0.35207557,
                +0.17264650,
                -0.16662873,
                -0.15010859,
                -0.14292650,
            ],
            [
                -0.00107461,
                -0.00497393,
                +0.04630126,
                +0.38048555,
                +0.47915877,
                +0.05379957,
                -0.11833663,
                -0.03372971,
            ],
            [
                -0.00029630,
                -0.00485664,
                -0.00640120,
                +0.22068169,
                +0.15419035,
                +0.08281200,
                +0.03373241,
                +0.00103902,
            ],
            [
                +0.00044323,
                +0.00850533,
                +0.09683860,
                +0.16959519,
                +0.03629097,
                +0.03740599,
                +0.02212356,
                +0.00318127,
            ],
        ]

        self.assertTrue(np.allclose(result, covar[:, :, 4, 4, 4, 4],
                                    atol=1e-4))

    def testSimulationEvalMean(self):
        mean_est = Volume(np.load(os.path.join(DATA_DIR, "mean_8_8_8.npy")))
        result = self.sim.eval_mean(mean_est)

        self.assertTrue(
            np.allclose(result["err"], 2.664116055950763, atol=1e-4))
        self.assertTrue(
            np.allclose(result["rel_err"], 0.1765943704851626, atol=1e-4))
        self.assertTrue(
            np.allclose(result["corr"], 0.9849211540734224, atol=1e-4))

    def testSimulationEvalCovar(self):
        covar_est = np.load(os.path.join(DATA_DIR, "covar_8_8_8_8_8_8.npy"))
        result = self.sim.eval_covar(covar_est)

        self.assertTrue(
            np.allclose(result["err"], 13.322721549011165, atol=1e-4))
        self.assertTrue(
            np.allclose(result["rel_err"], 0.5958936073938558, atol=1e-4))
        self.assertTrue(
            np.allclose(result["corr"], 0.8405347287741631, atol=1e-4))

    def testSimulationEvalCoords(self):
        mean_est = Volume(np.load(os.path.join(DATA_DIR, "mean_8_8_8.npy")))
        eigs_est = Volume(
            np.load(os.path.join(DATA_DIR, "eigs_est_8_8_8_1.npy"))[..., 0])

        clustered_coords_est = np.load(
            os.path.join(DATA_DIR, "clustered_coords_est.npy"))

        result = self.sim.eval_coords(mean_est, eigs_est, clustered_coords_est)

        self.assertTrue(
            np.allclose(
                result["err"][:10],
                [
                    1.58382394,
                    1.58382394,
                    3.72076112,
                    1.58382394,
                    1.58382394,
                    3.72076112,
                    3.72076112,
                    1.58382394,
                    1.58382394,
                    1.58382394,
                ],
            ))

        self.assertTrue(
            np.allclose(
                result["rel_err"][0, :10],
                [
                    0.11048937,
                    0.11048937,
                    0.21684697,
                    0.11048937,
                    0.11048937,
                    0.21684697,
                    0.21684697,
                    0.11048937,
                    0.11048937,
                    0.11048937,
                ],
            ))

        self.assertTrue(
            np.allclose(
                result["corr"][0, :10],
                [
                    0.99390133,
                    0.99390133,
                    0.97658719,
                    0.99390133,
                    0.99390133,
                    0.97658719,
                    0.97658719,
                    0.99390133,
                    0.99390133,
                    0.99390133,
                ],
            ))

    def testSimulationSaveFile(self):
        # Create a tmpdir in a context. It will be cleaned up on exit.
        with tempfile.TemporaryDirectory() as tmpdir:
            # Save the simulation object into STAR and MRCS files
            star_filepath = os.path.join(tmpdir, "save_test.star")
            # Save images into one single MRCS file
            self.sim.save(star_filepath,
                          batch_size=512,
                          save_mode="single",
                          overwrite=False)
            imgs_org = self.sim.images(start=0, num=1024)
            # Input saved images into Relion object
            relion_src = RelionSource(star_filepath, tmpdir, max_rows=1024)
            imgs_sav = relion_src.images(start=0, num=1024)
            # Compare original images with saved images
            self.assertTrue(np.allclose(imgs_org.asnumpy(),
                                        imgs_sav.asnumpy()))
            # Save images into multiple MRCS files based on batch size
            self.sim.save(star_filepath, batch_size=512, overwrite=False)
            # Input saved images into Relion object
            relion_src = RelionSource(star_filepath, tmpdir, max_rows=1024)
            imgs_sav = relion_src.images(start=0, num=1024)
            # Compare original images with saved images
            self.assertTrue(np.allclose(imgs_org.asnumpy(),
                                        imgs_sav.asnumpy()))
コード例 #16
0
logger = logging.getLogger(__name__)

# %%
# Create Simulation Object
# ------------------------

# Specify parameters
num_vols = 2  # number of volumes
img_size = 8  # image size in square
num_imgs = 1024  # number of images
num_eigs = 16  # number of eigen-vectors to keep

# Create a simulation object with specified filters
sim = Simulation(
    L=img_size,
    n=num_imgs,
    C=num_vols,
    unique_filters=[RadialCTFFilter(defocus=d) for d in np.linspace(1.5e4, 2.5e4, 7)],
)

# Specify the normal FB basis method for expending the 2D images
basis = FBBasis3D((img_size, img_size, img_size))

# Estimate the noise variance. This is needed for the covariance estimation step below.
noise_estimator = WhiteNoiseEstimator(sim, batchSize=500)
noise_variance = noise_estimator.estimate()
logger.info(f"Noise Variance = {noise_variance}")

# %%
# Estimate Mean Volume and Covariance
# -----------------------------------
#
コード例 #17
0
class SimTestCase(TestCase):
    def setUp(self):
        self.sim = Simulation(n=1024,
                              L=8,
                              filters=[
                                  RadialCTFFilter(defocus=d)
                                  for d in np.linspace(1.5e4, 2.5e4, 7)
                              ],
                              seed=0,
                              noise_filter=IdentityFilter(),
                              dtype='single')

    def tearDown(self):
        pass

    def testGaussianBlob(self):
        blobs = self.sim.vols
        self.assertTrue(
            np.allclose(blobs, np.load(os.path.join(DATA_DIR,
                                                    'sim_blobs.npy'))))

    def testSimulationRots(self):
        self.assertTrue(
            np.allclose(
                self.sim.rots[0, :, :],
                np.array([[0.91675498, 0.2587233, 0.30433956],
                          [0.39941773, -0.58404652, -0.70665065],
                          [-0.00507853, 0.76938412, -0.63876622]])))

    def testSimulationImages(self):
        images = self.sim.clean_images(0, 512).asnumpy()
        self.assertTrue(
            np.allclose(images,
                        np.load(os.path.join(DATA_DIR,
                                             'sim_clean_images.npy')),
                        rtol=1e-2))

    def testSimulationImagesNoisy(self):
        images = self.sim.images(0, 512).asnumpy()
        self.assertTrue(
            np.allclose(images,
                        np.load(
                            os.path.join(DATA_DIR,
                                         'sim_images_with_noise.npy')),
                        rtol=1e-2))

    def testSimulationImagesDownsample(self):
        # The simulation already generates images of size 8 x 8; Downsampling to resolution 8 should thus have no effect
        self.sim.downsample(8)
        images = self.sim.clean_images(0, 512).asnumpy()
        self.assertTrue(
            np.allclose(images,
                        np.load(os.path.join(DATA_DIR,
                                             'sim_clean_images.npy')),
                        rtol=1e-2))

    def testSimulationImagesShape(self):
        # The 'images' method should be tolerant of bounds - here we ask for 1000 images starting at index 1000,
        # so we'll get back 25 images in return instead
        images = self.sim.images(1000, 1000)
        self.assertTrue(images.shape, (8, 8, 25))

    def testSimulationEigen(self):
        eigs_true, lambdas_true = self.sim.eigs()
        self.assertTrue(
            np.allclose(
                eigs_true[:, :, 2, 0],
                np.array([[
                    -1.67666201e-07, -7.95741380e-06, -1.49160041e-04,
                    -1.10151654e-03, -3.11287888e-03, -3.09157884e-03,
                    -9.91418026e-04, -1.31673165e-04
                ],
                          [
                              -1.15402077e-06, -2.49849709e-05,
                              -3.51658906e-04, -2.21575261e-03,
                              -7.83315487e-03, -9.44795180e-03,
                              -4.07636259e-03, -9.02186439e-04
                          ],
                          [
                              -1.88737249e-05, -1.91418396e-04,
                              -1.09021540e-03, -1.02020288e-03, 1.39411855e-02,
                              8.58035963e-03, -5.54619730e-03, -3.86377703e-03
                          ],
                          [
                              -1.21280536e-04, -9.51461843e-04,
                              -3.22565017e-03, -1.05731178e-03, 2.61375736e-02,
                              3.11595201e-02, 6.40814053e-03, -2.31698658e-02
                          ],
                          [
                              -2.44067283e-04, -1.40560151e-03,
                              -6.73082832e-05, 1.44160679e-02, 2.99893934e-02,
                              5.92632964e-02, 7.75623545e-02, 3.06570008e-02
                          ],
                          [
                              -1.53507499e-04, -7.21709803e-04, 8.54929152e-04,
                              -1.27235036e-02, -5.34382043e-03, 2.18879692e-02,
                              6.22706190e-02, 4.51998860e-02
                          ],
                          [
                              -3.00595184e-05, -1.43038429e-04,
                              -2.15870258e-03, -9.99002904e-02,
                              -7.79077187e-02, -1.53395887e-02, 1.88777559e-02,
                              1.68759506e-02
                          ],
                          [
                              3.22692649e-05, 4.07977635e-03, 1.63959339e-02,
                              -8.68835449e-02, -7.86240026e-02,
                              -1.75694861e-02, 3.24984640e-03, 1.95389288e-03
                          ]])))

    def testSimulationMean(self):
        mean_vol = self.sim.mean_true()
        self.assertTrue(
            np.allclose([
                [
                    0.00000930, 0.00033866, 0.00490734, 0.01998369, 0.03874487,
                    0.04617764, 0.02970645, 0.00967604
                ],
                [
                    0.00003904, 0.00247391, 0.03818476, 0.12325402, 0.22278425,
                    0.25246665, 0.14093882, 0.03683474
                ],
                [
                    0.00014177, 0.01191146, 0.14421064, 0.38428235, 0.78645319,
                    0.86522675, 0.44862473, 0.16382280
                ],
                [
                    0.00066036, 0.03137806, 0.29226971, 0.97105378, 2.39410496,
                    2.17099857, 1.23595858, 0.49233940
                ],
                [
                    0.00271748, 0.05491289, 0.49955708, 2.05356097, 3.70941424,
                    3.01578689, 1.51441932, 0.52054572
                ],
                [
                    0.00584845, 0.06962635, 0.50568032, 1.99643707, 3.77415895,
                    2.76039767, 1.04602003, 0.20633197
                ],
                [
                    0.00539583, 0.06068972, 0.47008955, 1.17128026, 1.82821035,
                    1.18743944, 0.30667788, 0.04851476
                ],
                [
                    0.00246362, 0.04867788, 0.65284950, 0.65238875, 0.65745538,
                    0.37955678, 0.08053055, 0.01210055
                ],
            ], mean_vol[:, :, 4]))

    def testSimulationVolCoords(self):
        coords, norms, inners = self.sim.vol_coords()
        self.assertTrue(
            np.allclose([4.72837704, -4.72837709], coords, atol=1e-4))
        self.assertTrue(
            np.allclose([8.20515764e-07, 1.17550184e-06], norms, atol=1e-4))
        self.assertTrue(
            np.allclose([3.78030562e-06, -4.20475816e-06], inners, atol=1e-4))

    def testSimulationCovar(self):
        covar = self.sim.covar_true()
        result = [
            [
                -0.00000289, -0.00005839, -0.00018998, -0.00124722,
                -0.00003155, +0.00743356, +0.00798143, +0.00303416
            ],
            [
                -0.00000776, +0.00018371, +0.00448675, -0.00794970,
                -0.02988000, -0.00185446, +0.01786612, +0.00685990
            ],
            [
                +0.00001144, +0.00324029, +0.03364052, -0.00272520,
                -0.08976389, -0.05404807, +0.00268740, -0.03081760
            ],
            [
                +0.00003204, +0.00909853, +0.07859941, +0.07254293,
                -0.19365733, -0.09007251, -0.15731451, -0.15690306
            ],
            [
                -0.00040561, +0.00685139, +0.11074986, +0.35207557,
                +0.17264650, -0.16662873, -0.15010859, -0.14292650
            ],
            [
                -0.00107461, -0.00497393, +0.04630126, +0.38048555,
                +0.47915877, +0.05379957, -0.11833663, -0.03372971
            ],
            [
                -0.00029630, -0.00485664, -0.00640120, +0.22068169,
                +0.15419035, +0.08281200, +0.03373241, +0.00103902
            ],
            [
                +0.00044323, +0.00850533, +0.09683860, +0.16959519,
                +0.03629097, +0.03740599, +0.02212356, +0.00318127
            ],
        ]

        self.assertTrue(np.allclose(result, covar[:, :, 4, 4, 4, 4],
                                    atol=1e-4))

    def testSimulationEvalMean(self):
        mean_est = np.load(os.path.join(DATA_DIR, 'mean_8_8_8.npy'))
        result = self.sim.eval_mean(mean_est)

        self.assertTrue(
            np.allclose(result['err'], 2.664116055950763, atol=1e-4))
        self.assertTrue(
            np.allclose(result['rel_err'], 0.1765943704851626, atol=1e-4))
        self.assertTrue(
            np.allclose(result['corr'], 0.9849211540734224, atol=1e-4))

    def testSimulationEvalCovar(self):
        covar_est = np.load(os.path.join(DATA_DIR, 'covar_8_8_8_8_8_8.npy'))
        result = self.sim.eval_covar(covar_est)

        self.assertTrue(
            np.allclose(result['err'], 13.322721549011165, atol=1e-4))
        self.assertTrue(
            np.allclose(result['rel_err'], 0.5958936073938558, atol=1e-4))
        self.assertTrue(
            np.allclose(result['corr'], 0.8405347287741631, atol=1e-4))

    def testSimulationEvalCoords(self):
        mean_est = np.load(os.path.join(DATA_DIR, 'mean_8_8_8.npy'))
        eigs_est = np.load(os.path.join(DATA_DIR, 'eigs_est_8_8_8_1.npy'))
        clustered_coords_est = np.load(
            os.path.join(DATA_DIR, 'clustered_coords_est.npy'))

        result = self.sim.eval_coords(mean_est, eigs_est, clustered_coords_est)

        self.assertTrue(
            np.allclose(result['err'][:10], [
                1.58382394, 1.58382394, 3.72076112, 1.58382394, 1.58382394,
                3.72076112, 3.72076112, 1.58382394, 1.58382394, 1.58382394
            ]))

        self.assertTrue(
            np.allclose(result['rel_err'][:10], [
                0.11048937, 0.11048937, 0.21684697, 0.11048937, 0.11048937,
                0.21684697, 0.21684697, 0.11048937, 0.11048937, 0.11048937
            ]))

        self.assertTrue(
            np.allclose(result['corr'][:10], [
                0.99390133, 0.99390133, 0.97658719, 0.99390133, 0.99390133,
                0.97658719, 0.97658719, 0.99390133, 0.99390133, 0.99390133
            ]))
コード例 #18
0
class PreprocessPLTestCase(TestCase):
    def setUp(self):

        self.L = 64
        self.n = 128
        self.dtype = np.float32
        self.noise_filter = FunctionFilter(
            lambda x, y: np.exp(-(x**2 + y**2) / 2))

        self.sim = Simulation(
            L=self.L,
            n=self.n,
            unique_filters=[
                RadialCTFFilter(defocus=d)
                for d in np.linspace(1.5e4, 2.5e4, 7)
            ],
            noise_filter=self.noise_filter,
            dtype=self.dtype,
        )
        self.imgs_org = self.sim.images(start=0, num=self.n)

    def testPhaseFlip(self):
        self.sim.phase_flip()
        imgs_pf = self.sim.images(start=0, num=self.n)

        # check energy conservation
        self.assertTrue(
            np.allclose(
                anorm(self.imgs_org.asnumpy(), axes=(1, 2)),
                anorm(imgs_pf.asnumpy(), axes=(1, 2)),
            ))

    def testDownsample(self):
        # generate a 3D map with density decays as Gaussian function
        g3d = grid_3d(self.L, dtype=self.dtype)
        coords = np.array(
            [g3d["x"].flatten(), g3d["y"].flatten(), g3d["z"].flatten()])
        sigma = 0.2
        vol = np.exp(-0.5 * np.sum(np.abs(coords / sigma)**2, axis=0)).astype(
            self.dtype)
        vol = np.reshape(vol, g3d["x"].shape)
        vols = Volume(vol)

        # set noise to zero and CFT filters to unity for simulation object
        noise_var = 0
        noise_filter = ScalarFilter(dim=2, value=noise_var)
        sim = Simulation(
            L=self.L,
            n=self.n,
            vols=vols,
            offsets=0.0,
            amplitudes=1.0,
            unique_filters=[
                ScalarFilter(dim=2, value=1)
                for d in np.linspace(1.5e4, 2.5e4, 7)
            ],
            noise_filter=noise_filter,
            dtype=self.dtype,
        )
        # get images before downsample
        imgs_org = sim.images(start=0, num=self.n)
        # get images after downsample
        max_resolution = 32
        sim.downsample(max_resolution)
        imgs_ds = sim.images(start=0, num=self.n)

        # Check individual grid points
        self.assertTrue(
            np.allclose(
                imgs_org[:, 32, 32],
                imgs_ds[:, 16, 16],
                atol=utest_tolerance(self.dtype),
            ))
        # check resolution
        self.assertTrue(np.allclose(max_resolution, imgs_ds.shape[1]))
        # check energy conservation after downsample
        self.assertTrue(
            np.allclose(
                anorm(imgs_org.asnumpy(), axes=(1, 2)) / self.L,
                anorm(imgs_ds.asnumpy(), axes=(1, 2)) / max_resolution,
                atol=utest_tolerance(self.dtype),
            ))

    def testNormBackground(self):
        bg_radius = 1.0
        grid = grid_2d(self.L)
        mask = grid["r"] > bg_radius
        self.sim.normalize_background()
        imgs_nb = self.sim.images(start=0, num=self.n).asnumpy()
        new_mean = np.mean(imgs_nb[:, mask])
        new_variance = np.var(imgs_nb[:, mask])

        # new mean of noise should be close to zero and variance should be close to 1
        self.assertTrue(new_mean < 1e-7 and abs(new_variance - 1) < 1e-7)

    def testWhiten(self):
        noise_estimator = AnisotropicNoiseEstimator(self.sim)
        self.sim.whiten(noise_estimator.filter)
        imgs_wt = self.sim.images(start=0, num=self.n).asnumpy()

        # calculate correlation between two neighboring pixels from background
        corr_coef = np.corrcoef(imgs_wt[:, self.L - 1, self.L - 1],
                                imgs_wt[:, self.L - 2, self.L - 1])

        # correlation matrix should be close to identity
        self.assertTrue(np.allclose(np.eye(2), corr_coef, atol=1e-1))

    def testInvertContrast(self):
        sim1 = self.sim
        imgs1 = sim1.images(start=0, num=128)
        sim1.invert_contrast()
        imgs1_rc = sim1.images(start=0, num=128)
        # need to set the negative images to the second simulation object
        sim2 = ArrayImageSource(-imgs1)
        sim2.invert_contrast()
        imgs2_rc = sim2.images(start=0, num=128)

        # all images should be the same after inverting contrast
        self.assertTrue(np.allclose(imgs1_rc.asnumpy(), imgs2_rc.asnumpy()))
コード例 #19
0
infile = mrcfile.open(os.path.join(DATA_DIR, "clean70SRibosome_vol_65p.mrc"))
logger.info(f"Load 3D map from mrc file, {infile}")
vols = Volume(infile.data)

# Downsample the volume to a desired resolution and increase density
# by 1.0e5 time for a better graph view
logger.info(
    f"Downsample map to a resolution of {img_size} x {img_size} x {img_size}")
vols = vols.downsample((img_size, ) * 3) * 1.0e5

# Create a simulation object with specified filters and the downsampled 3D map
logger.info("Use downsampled map to create simulation object.")
source = Simulation(
    L=img_size,
    n=num_imgs,
    vols=vols,
    unique_filters=ctf_filters,
    noise_filter=noise_filter,
)

logger.info("Obtain original images.")
imgs_od = source.images(start=0, num=1).asnumpy()

logger.info("Perform phase flip to input images.")
source.phase_flip()
imgs_pf = source.images(start=0, num=1).asnumpy()

max_resolution = 15
logger.info(f"Downsample resolution to {max_resolution} X {max_resolution}")
if max_resolution < source.L:
    source.downsample(max_resolution)
コード例 #20
0
logger.info(
    f"Load 3D map and downsample 3D map to desired grids "
    f"of {img_size} x {img_size} x {img_size}."
)
infile = mrcfile.open(os.path.join(DATA_DIR, "clean70SRibosome_vol_65p.mrc"))
# We prefer that our various arrays have consistent dtype.
vols = Volume(infile.data.astype(dtype) / np.max(infile.data))
vols = vols.downsample(img_size)

# Create a simulation object with specified filters and the downsampled 3D map
logger.info("Use downsampled map to creat simulation object.")
sim = Simulation(
    L=img_size,
    n=num_imgs,
    vols=vols,
    unique_filters=ctf_filters,
    offsets=0.0,
    amplitudes=1.0,
    dtype=dtype,
    noise_filter=noise_filter,
)

# Specify the fast FB basis method for expending the 2D images
ffbbasis = FFBBasis2D((img_size, img_size), dtype=dtype)

# Assign the CTF information and index for each image
h_idx = sim.filter_indices

# Evaluate CTF in the 8X8 FB basis
h_ctf_fb = [filt.fb_mat(ffbbasis) for filt in ctf_filters]

# Get clean images from projections of 3D map.
コード例 #21
0
    parser = ConfigArgumentParser(description='Generate a Simulation and run Covariance estimation.')
    parser.add_argument('--num_volumes', default=2, type=int)
    parser.add_argument('--image_size', default=8, type=int)
    parser.add_argument('--num_images', default=1024, type=int)
    parser.add_argument('--num_eigs', default=16, type=int)

    with parser.parse_args() as args:

        C = args.num_volumes
        L = args.image_size
        n = args.num_images

        sim = Simulation(
            n=n,
            C=C,
            filters=SourceFilter(
                [RadialCTFFilter(defocus=d) for d in np.linspace(1.5e4, 2.5e4, 7)],
                n=n
            )
        )
        basis = FBBasis3D((L, L, L))

        noise_estimator = WhiteNoiseEstimator(sim, batchSize=500)
        # Estimate the noise variance. This is needed for the covariance estimation step below.
        noise_variance = noise_estimator.estimate()
        print(f'Noise Variance = {noise_variance}')

        """
        Estimate the mean. This uses conjugate gradient on the normal equations for the least-squares estimator of the mean
        volume. The mean volume is represented internally using the basis object, but the output is in the form of an
        L-by-L-by-L array.
        """
コード例 #22
0
class BatchedRotCov2DTestCase(TestCase):
    def setUp(self):
        n = 32
        L = 8
        filters = [
            RadialCTFFilter(5, 200, defocus=d, Cs=2.0, alpha=0.1)
            for d in np.linspace(1.5e4, 2.5e4, 7)
        ]
        self.dtype = np.float32
        self.noise_var = 0.1848

        # Initial noise filter to generate noise images.
        # Noise variance is set to a value far away that is used to calculate
        # covariance matrix and CWF coefficients in order to check the function
        # for rebuilding positive definite covariance matrix.
        noise_filter = ScalarFilter(dim=2, value=self.noise_var * 0.001)

        self.src = Simulation(L,
                              n,
                              unique_filters=filters,
                              dtype=self.dtype,
                              noise_filter=noise_filter)
        self.basis = FFBBasis2D((L, L), dtype=self.dtype)
        self.coeff = self.basis.evaluate_t(self.src.images(0, self.src.n))

        self.ctf_idx = self.src.filter_indices
        self.ctf_fb = [f.fb_mat(self.basis) for f in self.src.unique_filters]

        self.cov2d = RotCov2D(self.basis)
        self.bcov2d = BatchedRotCov2D(self.src, self.basis, batch_size=7)

    def tearDown(self):
        pass

    def blk_diag_allclose(self, blk_diag_a, blk_diag_b, atol=1e-8):
        close = True
        for blk_a, blk_b in zip(blk_diag_a, blk_diag_b):
            close = close and np.allclose(blk_a, blk_b, atol=atol)
        return close

    def testMeanCovar(self):
        # Test basic functionality against RotCov2D.

        mean_cov2d = self.cov2d.get_mean(self.coeff,
                                         ctf_fb=self.ctf_fb,
                                         ctf_idx=self.ctf_idx)
        covar_cov2d = self.cov2d.get_covar(
            self.coeff,
            mean_coeff=mean_cov2d,
            ctf_fb=self.ctf_fb,
            ctf_idx=self.ctf_idx,
            noise_var=self.noise_var,
        )

        mean_bcov2d = self.bcov2d.get_mean()
        covar_bcov2d = self.bcov2d.get_covar(noise_var=self.noise_var)

        self.assertTrue(
            np.allclose(mean_cov2d,
                        mean_bcov2d,
                        atol=utest_tolerance(self.dtype)))

        self.assertTrue(
            self.blk_diag_allclose(covar_cov2d,
                                   covar_bcov2d,
                                   atol=utest_tolerance(self.dtype)))

    def testZeroMean(self):
        # Make sure it works with zero mean (pure second moment).
        zero_coeff = np.zeros((self.basis.count, ), dtype=self.dtype)

        covar_cov2d = self.cov2d.get_covar(self.coeff,
                                           mean_coeff=zero_coeff,
                                           ctf_fb=self.ctf_fb,
                                           ctf_idx=self.ctf_idx)

        covar_bcov2d = self.bcov2d.get_covar(mean_coeff=zero_coeff)

        self.assertTrue(
            self.blk_diag_allclose(covar_cov2d,
                                   covar_bcov2d,
                                   atol=utest_tolerance(self.dtype)))

    def testAutoMean(self):
        # Make sure it automatically calls get_mean if needed.
        covar_cov2d = self.cov2d.get_covar(self.coeff,
                                           ctf_fb=self.ctf_fb,
                                           ctf_idx=self.ctf_idx)

        covar_bcov2d = self.bcov2d.get_covar()

        self.assertTrue(
            self.blk_diag_allclose(covar_cov2d,
                                   covar_bcov2d,
                                   atol=utest_tolerance(self.dtype)))

    def testShrink(self):
        # Make sure it properly shrinks the right-hand side if specified.
        covar_est_opt = {
            "shrinker": "frobenius_norm",
            "verbose": 0,
            "max_iter": 250,
            "iter_callback": [],
            "store_iterates": False,
            "rel_tolerance": 1e-12,
            "precision": self.dtype,
        }

        covar_cov2d = self.cov2d.get_covar(
            self.coeff,
            ctf_fb=self.ctf_fb,
            ctf_idx=self.ctf_idx,
            covar_est_opt=covar_est_opt,
        )

        covar_bcov2d = self.bcov2d.get_covar(covar_est_opt=covar_est_opt)

        self.assertTrue(self.blk_diag_allclose(covar_cov2d, covar_bcov2d))

    def testAutoBasis(self):
        # Make sure basis is automatically created if not specified.
        nbcov2d = BatchedRotCov2D(self.src)

        covar_bcov2d = self.bcov2d.get_covar()
        covar_nbcov2d = nbcov2d.get_covar()

        self.assertTrue(
            self.blk_diag_allclose(covar_bcov2d,
                                   covar_nbcov2d,
                                   atol=utest_tolerance(self.dtype)))

    def testCWFCoeff(self):
        # Calculate CWF coefficients using Cov2D base class
        mean_cov2d = self.cov2d.get_mean(self.coeff,
                                         ctf_fb=self.ctf_fb,
                                         ctf_idx=self.ctf_idx)
        covar_cov2d = self.cov2d.get_covar(
            self.coeff,
            ctf_fb=self.ctf_fb,
            ctf_idx=self.ctf_idx,
            noise_var=self.noise_var,
            make_psd=True,
        )

        coeff_cov2d = self.cov2d.get_cwf_coeffs(
            self.coeff,
            self.ctf_fb,
            self.ctf_idx,
            mean_coeff=mean_cov2d,
            covar_coeff=covar_cov2d,
            noise_var=self.noise_var,
        )

        # Calculate CWF coefficients using Batched Cov2D class
        mean_bcov2d = self.bcov2d.get_mean()
        covar_bcov2d = self.bcov2d.get_covar(noise_var=self.noise_var,
                                             make_psd=True)

        coeff_bcov2d = self.bcov2d.get_cwf_coeffs(
            self.coeff,
            self.ctf_fb,
            self.ctf_idx,
            mean_bcov2d,
            covar_bcov2d,
            noise_var=self.noise_var,
        )
        self.assertTrue(
            self.blk_diag_allclose(
                coeff_cov2d,
                coeff_bcov2d,
                atol=utest_tolerance(self.dtype),
            ))
コード例 #23
0
# Load the map file of a 70S Ribosome and downsample the 3D map to desired resolution.
# The downsampling should be done by the internal function of sim object in future.
# Below we use alternative implementation to obtain the exact result with Matlab version.
logger.info(f'Load 3D map and downsample 3D map to desired grids '
            f'of {img_size} x {img_size} x {img_size}.')
infile = mrcfile.open(os.path.join(DATA_DIR, 'clean70SRibosome_vol_65p.mrc'))
vols = infile.data
vols = vols[..., np.newaxis]
vols = downsample(vols, (img_size * np.ones(3, dtype=int)))

# Create a simulation object with specified filters and the downsampled 3D map
logger.info('Use downsampled map to creat simulation object.')
sim = Simulation(L=img_size,
                 n=num_imgs,
                 vols=vols,
                 C=num_maps,
                 filters=filters)

# Specify the fast FB basis method for expending the 2D images
ffbbasis = FFBBasis2D((img_size, img_size))

# Generate 2D clean images from input 3D map. The following statement can be used from the sim object:
# imgs_clean = sim.clean_images(start=0, num=num_imgs)
# To be consistent with the Matlab version in the numbers, we need to use the statements as below:
logger.info(
    'Generate random distributed rotation angles and obtain corresponding 2D clean images.'
)
rots = qrand_rots(num_imgs, seed=0)
imgs_clean = vol2img(sim.vols[..., 0], rots)
コード例 #24
0
# The downsampling should be done by the internal function of Volume object in future.
logger.info(f"Load 3D map and downsample 3D map to desired grids "
            f"of {img_size} x {img_size} x {img_size}.")
infile = mrcfile.open(os.path.join(DATA_DIR, "clean70SRibosome_vol_65p.mrc"))
vols = Volume(infile.data.astype(dtype))
vols = vols.downsample((img_size, ) * 3)

# %%
# Create Simulation Object and Obtain True Rotation Angles
# --------------------------------------------------------

# Create a simulation object with specified filters and the downsampled 3D map
logger.info("Use downsampled map to creat simulation object.")
sim = Simulation(L=img_size,
                 n=num_imgs,
                 vols=vols,
                 unique_filters=filters,
                 dtype=dtype)

logger.info(
    "Get true rotation angles generated randomly by the simulation object.")
rots_true = sim.rots

# %%
# Estimate Orientation and Rotation Angles
# ----------------------------------------

# Initialize an orientation estimation object and perform view angle estimation
logger.info(
    "Estimate rotation angles using synchronization matrix and voting method.")
orient_est = CLSyncVoting(sim, n_theta=36)
コード例 #25
0
# %%
# Setup Simulation Source
# -----------------------

# Simulation will randomly shift and amplify images by default.
# Instead we define the following parameters.
shifts = np.zeros((n_img, 2))
amplitudes = np.ones(n_img)

# Create a Simulation Source object
src = Simulation(
    vols=v,  # our Volume
    L=v.resolution,  # resolution, should match Volume
    n=n_img,  # number of projection images
    C=len(v),  # Number of volumes in vols. 1 in this case
    angles=rots.angles,  # pass our rotations as Euler angles
    offsets=shifts,  # translations (wrt to origin)
    amplitudes=amplitudes,  # amplification ( 1 is identity)
    seed=12345,  # RNG seed for reproducibility
    dtype=v.dtype,  # match our datatype to the Volume.
    noise_filter=white_noise_filter,  # optionally prescribe noise
)

# %%
# Yield projection images from the Simulation Source
# --------------------------------------------------

# Consume images from the source by providing
# a starting index and number of images.
# Here we generate the first 3 and peek at them.
src.images(0, 3).show()
src.projections(0, 3).show()