def get_reviewer(dataset, mode="simulate", model=DEFAULT_MODEL, query_strategy=DEFAULT_QUERY_STRATEGY, balance_strategy=DEFAULT_BALANCE_STRATEGY, feature_extraction=DEFAULT_FEATURE_EXTRACTION, n_instances=DEFAULT_N_INSTANCES, n_papers=None, n_queries=None, embedding_fp=None, verbose=0, prior_idx=None, prior_record_id=None, n_prior_included=DEFAULT_N_PRIOR_INCLUDED, n_prior_excluded=DEFAULT_N_PRIOR_EXCLUDED, config_file=None, state_file=None, model_param=None, query_param=None, balance_param=None, feature_param=None, seed=None, included_dataset=[], excluded_dataset=[], prior_dataset=[], new=False, **kwargs): """Get a review object from arguments. See __main__.py for a description of the arguments. """ as_data = create_as_data(dataset, included_dataset, excluded_dataset, prior_dataset, new=new) if len(as_data) == 0: raise ValueError("Supply at least one dataset" " with at least one record.") cli_settings = ASReviewSettings(model=model, n_instances=n_instances, n_queries=n_queries, n_papers=n_papers, n_prior_included=n_prior_included, n_prior_excluded=n_prior_excluded, query_strategy=query_strategy, balance_strategy=balance_strategy, feature_extraction=feature_extraction, mode=mode, data_fp=None) cli_settings.from_file(config_file) if state_file is not None: with open_state(state_file) as state: if state.is_empty(): state.settings = cli_settings settings = state.settings else: settings = cli_settings if n_queries is not None: settings.n_queries = n_queries if n_papers is not None: settings.n_papers = n_papers if model_param is not None: settings.model_param = model_param if query_param is not None: settings.query_param = query_param if balance_param is not None: settings.balance_param = balance_param if feature_param is not None: settings.feature_param = feature_param # Check if mode is valid if mode in AVAILABLE_REVIEW_CLASSES: logging.info(f"Start review in '{mode}' mode.") else: raise ValueError(f"Unknown mode '{mode}'.") logging.debug(settings) # Initialize models. random_state = get_random_state(seed) train_model = get_classifier(settings.model, **settings.model_param, random_state=random_state) query_model = get_query_model(settings.query_strategy, **settings.query_param, random_state=random_state) balance_model = get_balance_model(settings.balance_strategy, **settings.balance_param, random_state=random_state) feature_model = get_feature_model(settings.feature_extraction, **settings.feature_param, random_state=random_state) # LSTM models need embedding matrices. if train_model.name.startswith("lstm-"): texts = as_data.texts train_model.embedding_matrix = feature_model.get_embedding_matrix( texts, embedding_fp) # prior knowledge if prior_idx is not None and prior_record_id is not None and \ len(prior_idx) > 0 and len(prior_record_id) > 0: raise ValueError( "Not possible to provide both prior_idx and prior_record_id") if prior_record_id is not None and len(prior_record_id) > 0: prior_idx = convert_id_to_idx(as_data, prior_record_id) # Initialize the review class. if mode == "simulate": reviewer = ReviewSimulate(as_data, model=train_model, query_model=query_model, balance_model=balance_model, feature_model=feature_model, n_papers=settings.n_papers, n_instances=settings.n_instances, n_queries=settings.n_queries, prior_idx=prior_idx, n_prior_included=settings.n_prior_included, n_prior_excluded=settings.n_prior_excluded, state_file=state_file, **kwargs) elif mode == "minimal": reviewer = MinimalReview(as_data, model=train_model, query_model=query_model, balance_model=balance_model, feature_model=feature_model, n_papers=settings.n_papers, n_instances=settings.n_instances, n_queries=settings.n_queries, state_file=state_file, **kwargs) else: raise ValueError("Error finding mode, should never come here...") return reviewer
def train_model(project_id, label_method=None): """Add the new labels to the review and do the modeling. It uses a lock to ensure only one model is running at the same time. Old results directories are deleted after 4 iterations. It has one argument on the CLI, which is the base project directory. """ logging.info(f"Project {project_id} - Train a new model for project") # get file locations asr_kwargs_file = get_kwargs_path(project_id) lock_file = get_lock_path(project_id) # Lock so that only one training run is running at the same time. # It doesn't lock the flask server/client. with SQLiteLock(lock_file, blocking=False, lock_name="training", project_id=project_id) as lock: # If the lock is not acquired, another training instance is running. if not lock.locked(): logging.info("Project {project_id} - " "Cannot acquire lock, other instance running.") return # Lock the current state. We want to have a consistent active state. # This does communicate with the flask backend; it prevents writing and # reading to the same files at the same time. with SQLiteLock(lock_file, blocking=True, lock_name="active", project_id=project_id) as lock: # Get the all labels since last run. If no new labels, quit. new_label_history = read_label_history(project_id) data_fp = str(get_data_file_path(project_id)) as_data = read_data(project_id) state_file = get_state_path(project_id) # collect command line arguments and pass them to the reviewer with open(asr_kwargs_file, "r") as fp: asr_kwargs = json.load(fp) asr_kwargs['state_file'] = str(state_file) reviewer = get_reviewer(dataset=data_fp, mode="minimal", **asr_kwargs) with open_state(state_file) as state: old_label_history = _get_label_train_history(state) diff_history = _get_diff_history(new_label_history, old_label_history) if len(diff_history) == 0: logging.info( "Project {project_id} - No new labels since last run.") return query_record_ids = np.array([x[0] for x in diff_history], dtype=int) inclusions = np.array([x[1] for x in diff_history], dtype=int) query_idx = convert_id_to_idx(as_data, query_record_ids) # Classify the new labels, train and store the results. with open_state(state_file) as state: reviewer.classify(query_idx, inclusions, state, method=label_method) reviewer.train() reviewer.log_probabilities(state) new_query_idx = reviewer.query(reviewer.n_pool()).tolist() reviewer.log_current_query(state) # write the proba to a pandas dataframe with record_ids as index proba = pd.DataFrame({"proba": state.pred_proba.tolist()}, index=pd.Index(as_data.record_ids, name="record_id")) # update the pool and output the proba's # important: pool is sorted on query with SQLiteLock(lock_file, blocking=True, lock_name="active", project_id=project_id) as lock: # read the pool current_pool = read_pool(project_id) # diff pool and new_query_ind current_pool_idx = convert_id_to_idx(as_data, current_pool) current_pool_idx = frozenset(current_pool_idx) new_pool_idx = [x for x in new_query_idx if x in current_pool_idx] # convert new_pool_idx back to record_ids new_pool = convert_idx_to_id(as_data, new_pool_idx) # write the pool and proba write_pool(project_id, new_pool) write_proba(project_id, proba)