コード例 #1
0
 def kdj(self, code, date='', method=9, smooth=30):
     '''
     Return the (k, d, j) given a specific time
     :param code: str, stock index
     :param date: str, the date needed
     :param method: the range took into the calculation, default 9 days
     :param smooth: the smooth period, default 30 days
     :return: the value, (k, d, j)
     '''
     rsv_list = []
     days_list = at.opening_days(code, smooth, date)
     count = 1
     for i in days_list:
         rsv_h = self.__rsv__(code, i, method)
         rsv_list.append(rsv_h)
         at.process_monitor(count / len(days_list) * 100)
         count += 1
     k_line = [50]
     d_line = [50]
     for j in rsv_list:
         k_hold = j / 3 + 2 * k_line[-1] / 3
         k_line.append(k_hold)
         d_hold = k_line[-1] / 3 + 2 * d_line[-1] / 3
         d_line.append(d_hold)
     k = k_line[-1]
     d = d_line[-1]
     j = 3 * k - 2 * d
     if j > 100:
         j = 100
     return (k, d, j)
コード例 #2
0
def periodic_auction_scanner(code, days, start_date='', progress_bar=1):
    '''
    Scanner the periodic auction volume for multiple days
    :param code: the stock index
    :param days: the duration
    :param start_date: specifying the start date if needed
    :return: a list of (date, ratio) pairs
    '''
    try:
        outstanding = ms.get_stock_outstanding(code)
        content_list = []
        days_list = at.opening_days(code, days, start_date)
        count = 1
        for i in days_list:
            volume = al.periodic_auction_volume(code, i)
            ratio = float(volume / outstanding)
            ratio = round(ratio * 100, 5)
            pair = (i, ratio)
            content_list.append(pair)
            if progress_bar == 1:
                at.process_monitor(count / len(days_list) * 100)
            count += 1
        return content_list
    except:
        print(error_message)
コード例 #3
0
def save_tick_summary(code_list, date, duration, detail=True, cut=None):
    path = os.path.join(os.getcwd(), 'tick_summary')
    if not os.path.exists(path):
        os.mkdir(path)
    for code in code_list:
        date_list = at.opening_days(code, duration, date)
        file_path = os.path.join(path, '%s-%s-%s.txt'%(code, date, duration))
        count = 0
        with open(file_path, 'w') as w:
            for date in date_list:
                count += 1
                w.writelines('%s\n'%date)
                w.writelines('\n')
                t = TickAna(code, date, cut)

                aggre_summary = t.aggregate_summary()

                w.writelines('\t%s\n' % 'Summary')
                w.writelines('\t\tbuy amount: %s\n' % aggre_summary['buy_amount'])
                w.writelines('\t\tsell amount: %s\n' % aggre_summary['sell_amount'])
                w.writelines('\t\tbuy effect: %s\n' % aggre_summary['buy_effect'])
                w.writelines('\t\tsell effect: %s\n' % aggre_summary['sell_effect'])
                w.writelines('\t\tstrength: %s\n' % aggre_summary['strength'])
                w.writelines('\t\teffectiveness: %s\n' % aggre_summary['effectiveness'])
                w.writelines('\t\toverpower: %s\n' % aggre_summary['overpower'])
                w.writelines('\n')

                if detail == True:
                    summary = t.summary()
                    for i in summary:
                        w.writelines('\t%s\n' % i)
                        w.writelines('\t\tbuy amount: %s\n' % summary[i]['buy_amount'])
                        w.writelines('\t\tsell amount: %s\n' % summary[i]['sell_amount'])
                        w.writelines('\t\tbuy effect: %s\n' % summary[i]['buy_effect'])
                        w.writelines('\t\tsell effect: %s\n' % summary[i]['sell_effect'])
                        w.writelines('\t\tstrength: %s\n' % summary[i]['strength'])
                        w.writelines('\t\teffectiveness: %s\n' % summary[i]['effectiveness'])
                        w.writelines('\t\toverpower: %s\n' % summary[i]['overpower'])
                        w.writelines('\n')
                    w.writelines('\n')
                at.process_monitor(count / len(date_list) * 100)
コード例 #4
0
 def kdj_of_a_period(self,
                     code,
                     duration,
                     start_date="",
                     method=9,
                     smooth=30):
     '''
     Calculate a series of kdj in a relatively less consuming manner
     :param code: str, stock index
     :param duration: int, the duration of the period demanded
     :param start_date: str, the start date
     :param method: the range took into calculation, default 9 days
     :param smooth: the smooth period, default 30 days
     :return: a series of kdj in a form of (date, (k, d, j))
     '''
     rsv_list = []
     days_list = at.opening_days(code, smooth + duration, start_date)
     count = 1
     for i in days_list:
         rsv_h = self.__rsv__(code, i, method)
         rsv_list.append(rsv_h)
         at.process_monitor(count / len(days_list) * 100)
         count += 1
     k_line = [50]
     d_line = [50]
     for j in rsv_list:
         k_hold = j / 3 + 2 * k_line[-1] / 3
         k_line.append(k_hold)
         d_hold = k_line[-1] / 3 + 2 * d_line[-1] / 3
         d_line.append(d_hold)
     output_list = []
     for io in range(duration):
         date = days_list[io - duration]
         k = k_line[io - duration]
         d = d_line[io - duration]
         j = 3 * k - 2 * d
         if j > 100:
             j = 100
         output_list.append((date, (k, d, j)))
     return output_list
コード例 #5
0
def save_period_tick_top_summary(code_list, date, duration, top=3, cut=None):
    path = os.path.join(os.getcwd(), 'tick_summary')
    if not os.path.exists(path):
        os.mkdir(path)
    count = 0
    for code in code_list:
        count += 1
        file_path = os.path.join(path, '%s-period-top-summary-%s-%s.txt'%(code, date, duration))
        with open(file_path, 'w') as w:
            t = TickAnne(code, date, duration, cut)
            top_dict = t.top_statistics(top)
            for i in top_dict:
                w.writelines('%s\n'%i)
                w.writelines('\n')
                for j in top_dict[i]:
                    price = j
                    for k in top_dict[i][j]:
                        percent = top_dict[i][j][k]
                        text = k.replace('_', ' ')
                        w.writelines('\tprice: %s\t%s: %s\n'%(price, text, percent))
                w.writelines('\n' * 2)
        at.process_monitor(count / len(code_list) * 100)
コード例 #6
0
def save_period_tick_summary(code_list, date, duration, cut=None):
    path = os.path.join(os.getcwd(), 'tick_summary')
    if not os.path.exists(path):
        os.mkdir(path)
    count = 0
    for code in code_list:
        count += 1
        file_path = os.path.join(path, '%s-period-summary-%s-%s.txt'%(code, date, duration))
        with open(file_path, 'w') as w:
            t = TickAnne(code, date, duration, cut)
            dict = t.__combined_dict__
            for i in sorted(dict):
                w.writelines('%s\n'%i)
                w.writelines('\n')
                w.writelines('\tbuy percent: %s\n' % dict[i]['buy_percent'])
                w.writelines('\tsell percent: %s\n' % dict[i]['sell_percent'])
                w.writelines('\tbuy effect: %s\n' % dict[i]['buy_effect'])
                w.writelines('\tsell effect: %s\n' % dict[i]['sell_effect'])
                w.writelines('\tstrength: %s\n' % dict[i]['strength'])
                w.writelines('\teffectiveness: %s\n' % dict[i]['effectiveness'])
                w.writelines('\toverpower: %s\n' % dict[i]['overpower'])
                w.writelines('\n')
        at.process_monitor(count / len(code_list) * 100)
コード例 #7
0
    def __close_price_list__(self, code, date, smooth, multi_threads=20):
        '''
        Get the price needed for calculation and return both days list and price list
        :param code: str, stock index
        :param date: str, the date
        :param smooth: int, the period taken into calculation
        :return: days list and price list
        '''
        days = (int(smooth / multi_threads) + 1) * multi_threads
        days_list = at.opening_days(code, days, date)
        close_price_list = []
        count = 1
        q = queue.Queue()
        start_pointer = 0

        def catch(code, date, stack):
            hold = ms.get_stock_hist_data(code, date)
            stack.put(hold)

        while start_pointer <= len(days_list) - multi_threads:
            thread = []
            for i in days_list[start_pointer:start_pointer + multi_threads]:
                t = threading.Thread(target=catch, args=(code, i, q))
                thread.append(t)
            for j in thread:
                j.start()
            for k in thread:
                k.join()
            at.process_monitor(count / (int(smooth / multi_threads) + 1) * 100)
            count += 1
            start_pointer += multi_threads
        while not q.empty():
            close_price_list.append(q.get())
        close_price_list = at.sort_list_by_date(close_price_list)
        close_price_list = close_price_list[-smooth:]
        return close_price_list
コード例 #8
0
    def __diff_lists_multi_smoothing__(self,
                                       code,
                                       smooth,
                                       date='',
                                       duration=default_range,
                                       leading_smooth=leading_smooth,
                                       threads=threads_of_catch):
        '''
        Generate a list of price differences along the date with multi-smoothing
        :param code: str, stock index
        :param date: str, date
        :param duration: int, the demanded duration
        :param smooth: list, the smooth method
        :param leading_smooth: int, the leading smooth period
        :param threads: int, the number of threads used
        :return: a list in form of (date, code, open, close, actual_percent, theoretical_percent, diff_percent, smoothed_actual, smoothed_theoretical, smoothed_diff)
        '''
        def catch(code, date, outstanding, f, queue):
            content = f(code, date, outstanding)
            queue.put(content)

        # Generate a days list that is the integral multiple of the threads
        forwarding_days = (int((duration + leading_smooth) / threads + 1) *
                           threads)
        days_list = (self.__opening_dates__(code, forwarding_days, date))
        # Multi-threading with looping
        q = queue.Queue()
        origin_list = []
        pointer = 0
        outstanding = ms.get_stock_outstanding(code)
        while pointer <= len(days_list) - threads:
            thread = []
            for i in days_list[pointer:pointer + threads]:
                t = threading.Thread(target=catch,
                                     args=(code, i, outstanding,
                                           self.__measure_diff__, q))
                thread.append(t)
            for j in thread:
                j.start()
            for k in thread:
                k.join()
            at.process_monitor((pointer + threads) / len(days_list) * 100)
            pointer += threads
        while not q.empty():
            origin_list.append(q.get())
        origin_list = at.sort_list_by_date(origin_list)
        # Re-construct for the final output list
        if len(origin_list) > 0:
            percent_list = []
            reference_h = origin_list[0]['reference']
            for io in origin_list:
                # (date, code, open, close, reference, actual_change, theoretical_change, diff)
                c_date = io['date']
                c_code = io['code']
                open = io['open']
                close = io['close']
                high = io['high']
                low = io['low']
                volume = io['volume']
                c_actual_change = self.__price_diff_percentage__(
                    io['actual change'], reference_h)
                c_theoretical_change = self.__price_diff_percentage__(
                    io['theoretical change'], reference_h)
                c_diff = self.__price_diff_percentage__(
                    io['difference'], reference_h)
                percent_list_line = {'date': c_date, 'code': c_code, 'open': open, 'close': close, 'high': high, \
                                     'low': low, 'volume': volume, 'actual change': c_actual_change, \
                                     'theoretical change': c_theoretical_change, 'difference': c_diff}
                percent_list.append(percent_list_line)
                reference_h = io['reference']
            smoothed_theoretical_holder = [
                i['theoretical change'] for i in percent_list
            ]
            smoothed_actual = [i['actual change'] for i in percent_list]
            smoothed_change_holder = [i['difference'] for i in percent_list]
            smoothed_theoretical = []
            smoothed_change = []
            for ism in smooth:
                smoothed_theoretical.append(
                    self.__smooth__(smoothed_theoretical_holder, ism))
                smoothed_change.append(
                    self.__smooth__(smoothed_change_holder, ism))
            for ip in range(len(percent_list)):
                percent_list[ip]['smoothed actual'] = smoothed_actual[ip]
                for ismx in range(len(smoothed_theoretical)):
                    percent_list[ip][
                        'smoothed theoretical %s' %
                        smooth[ismx]] = smoothed_theoretical[ismx][ip]
                    percent_list[ip]['smoothed difference %s' %
                                     smooth[ismx]] = smoothed_change[ismx][ip]
            return percent_list[-duration:]
        else:
            return None