def test_crnn_net_three_branches(self): feature_extractor_text_proto = """ crnn_net { net_type: THREE_BRANCHES conv_hyperparams { op: CONV regularizer { l2_regularizer { weight: 1e-4 } } initializer { variance_scaling_initializer { } } batch_norm { } } summarize_activations: false } """ convnet_proto = convnet_pb2.Convnet() text_format.Merge(feature_extractor_text_proto, convnet_proto) convnet_object = convnet_builder.build(convnet_proto, True) self.assertTrue(isinstance(convnet_object, crnn_net.CrnnNet)) test_image_shape = [2, 32, 128, 3] test_input_image = tf.random_uniform(test_image_shape, minval=0, maxval=255.0, dtype=tf.float32, seed=1) feature_maps = convnet_object.extract_features(test_input_image) self.assertTrue(len(feature_maps) == 3) print( 'Outputs of test_crnn_net_three_branches: {}'.format(feature_maps))
def test_resnet_50layer(self): feature_extractor_text_proto = """ resnet { net_type: SINGLE_BRANCH net_depth: RESNET_50 conv_hyperparams { op: CONV regularizer { l2_regularizer { weight: 1e-4 } } initializer { variance_scaling_initializer { } } batch_norm { } } summarize_activations: false } """ convnet_proto = convnet_pb2.Convnet() text_format.Merge(feature_extractor_text_proto, convnet_proto) convnet_object = convnet_builder.build(convnet_proto, True) self.assertTrue(isinstance(convnet_object, resnet.Resnet50Layer)) test_image_shape = [2, 32, 128, 3] test_input_image = tf.random_uniform(test_image_shape, minval=0, maxval=255.0, dtype=tf.float32, seed=1) feature_maps = convnet_object.extract_features(test_input_image) self.assertTrue(len(feature_maps) == 1) print('Outputs of test_resnet_single_branch: {}'.format(feature_maps))
def test_build_stn_convnet_tiny(self): text_proto = """ stn_convnet { conv_hyperparams { op: CONV regularizer { l2_regularizer { weight: 1e-4 } } initializer { variance_scaling_initializer { } } batch_norm { decay: 0.99 } } tiny: true } """ convnet_proto = convnet_pb2.Convnet() text_format.Merge(text_proto, convnet_proto) convnet_object = convnet_builder.build(convnet_proto, True) self.assertTrue(isinstance(convnet_object, stn_convnet.StnConvnetTiny)) test_image_shape = [2, 64, 128, 3] test_input_image = tf.random_uniform(test_image_shape, minval=0, maxval=255.0, dtype=tf.float32, seed=1) feature_maps = convnet_object.extract_features(test_input_image) self.assertTrue(len(feature_maps) == 1) print( 'Outputs of test_build_stn_convnet_tiny: {}'.format(feature_maps))