コード例 #1
0
    def initialize(self):
        """Initialize the ASTRA projectors."""
        if not self.is_initialized:
            if self.is_3d:
                projector_type = "cuda3d"
            else:
                if has_cuda:
                    projector_type = "cuda"
                else:
                    projector_type = "linear"

            opts = {
                "VoxelSuperSampling": self.super_sampling,
                "DetectorSuperSampling": self.super_sampling
            }

            if self.has_individual_projs:
                self.proj_id = [
                    astra.create_projector(projector_type, pg, self.vol_geom,
                                           opts) for pg in self.proj_geom_ind
                ]
                self.W_ind = [astra.OpTomo(p_id) for p_id in self.proj_id]

            self.proj_id.append(
                astra.create_projector(projector_type, self.proj_geom_all,
                                       self.vol_geom, opts))
            self.W_all = astra.OpTomo(self.proj_id[-1])

        super().initialize()
コード例 #2
0
    def initialize(self,
                   cfg,
                   Relaxation=1,
                   MinConstraint=None,
                   MaxConstraint=None):
        self.W = astra.OpTomo(cfg['ProjectorId'])
        self.vid = cfg['ReconstructionDataId']
        self.sid = cfg['ProjectionDataId']
        self.min_constraint = MinConstraint
        self.max_constraint = MaxConstraint

        try:
            v = astra.data2d.get_shared(self.vid)
            s = astra.data2d.get_shared(self.sid)
            self.data_mod = astra.data2d
        except Exception:
            v = astra.data3d.get_shared(self.vid)
            s = astra.data3d.get_shared(self.sid)
            self.data_mod = astra.data3d

        self.R = self.W * np.ones(v.shape, dtype=np.float32).ravel()
        self.R[self.R < 0.000001] = np.Inf
        self.R = 1 / self.R
        self.R = self.R.reshape(s.shape)

        self.mrC = self.W.T * np.ones(s.shape, dtype=np.float32).ravel()
        self.mrC[self.mrC < 0.000001] = np.Inf
        self.mrC = -Relaxation / self.mrC
        self.mrC = self.mrC.reshape(v.shape)
コード例 #3
0
    def initialize(self,
                   cfg,
                   liptschitz=1,
                   MinConstraint=None,
                   MaxConstraint=None):
        self.W = astra.OpTomo(cfg['ProjectorId'])
        self.vid = cfg['ReconstructionDataId']
        self.sid = cfg['ProjectionDataId']
        self.min_constraint = MinConstraint
        self.max_constraint = MaxConstraint

        try:
            v = astra.data2d.get_shared(self.vid)
            s = astra.data2d.get_shared(self.sid)
            self.data_mod = astra.data2d
        except Exception:
            v = astra.data3d.get_shared(self.vid)
            s = astra.data3d.get_shared(self.sid)
            self.data_mod = astra.data3d

        self.liptschitz = self.power_iteration(self.W, 10)
        self.nu = 1 / self.liptschitz

        self.ATy = self.W.BP(s)
        self.obj_func = None
        print('plugin initialized.', flush=True)
コード例 #4
0
def recon_sirt_fbp(im, angles, iter, temppath):
    """Reconstruct a sinogram with the SIRT-FBP algorithm (Pelt, 2015).

	Parameters
	----------
	im : array_like
		Sinogram image data as numpy array.

    iter : int
		Number of iterations to be used for the computation of SIRT filter.

	angles : double
		Value in radians representing the number of angles of the input sinogram.
	
	"""
    # Create ASTRA geometries:
    vol_geom = astra.create_vol_geom(im.shape[1], im.shape[1])
    proj_geom = astra.create_proj_geom('parallel', 1.0, im.shape[1],
                                       linspace(0, angles, im.shape[0], False))
    proj = astra.create_projector('cuda', proj_geom, vol_geom)
    p = astra.OpTomo(proj)

    # Register plugin with ASTRA
    astra.plugin.register(sirtfbp.plugin)

    # Create the ASTRA projector
    im_rec = p.reconstruct('SIRT-FBP',
                           im,
                           iter,
                           extraOptions={'filter_dir': temppath})

    return im_rec.astype(float32)
コード例 #5
0
 def __init__(self, DetectorsDim, AnglesVec, CenterRotOffset, ObjSize,
              device):
     self.DetectorsDim = DetectorsDim
     self.AnglesVec = AnglesVec
     self.ObjSize = ObjSize
     if CenterRotOffset is None:
         'scalar geometry since parallel_vec is not implemented for CPU ASTRA modules yet?'
         self.proj_geom = astra.create_proj_geom('parallel', 1.0,
                                                 DetectorsDim, AnglesVec)
     else:
         # define astra vector geometry (default)
         vectors = vec_geom_init2D(AnglesVec, 1.0, CenterRotOffset)
         self.proj_geom = astra.create_proj_geom('parallel_vec',
                                                 DetectorsDim, vectors)
     self.vol_geom = astra.create_vol_geom(ObjSize, ObjSize)
     if device == 'cpu':
         self.proj_id = astra.create_projector('line', self.proj_geom,
                                               self.vol_geom)  # for CPU
         self.device = 1
     elif device == 'gpu':
         self.proj_id = astra.create_projector('cuda', self.proj_geom,
                                               self.vol_geom)  # for GPU
         self.device = 0
     else:
         print("Select between 'cpu' or 'gpu' for device")
     # add optomo operator
     self.A_optomo = astra.OpTomo(self.proj_id)
コード例 #6
0
def calculate_error(proj_id, img, data):
    W = astra.OpTomo(proj_id)
    sino = W * img
    sino = sino.reshape(data.shape) - data
    tv = norm1(gradient(sino))
    l2 = norm2sq(sino) 
    return tv, l2 
コード例 #7
0
def DT(W,p, vol_size, proj_size, angles, Ngv, lamb=10, PU = 'cuda', K = 4, Niter = 50, epsilon=1e-4):
    
    [Nx,Nz] = vol_size
    [Ndetx, Ndety] = proj_size
    Nan = len(angles)
    if Ndety==1:
        sinogram = p.reshape([Nan, Ndetx])
    else:
        sinogram = p.reshape([Nan, Ndetx, Ndety])
    
    # create projection geometry and operator
    print('TVR-DART ...')
    print('Create projection geometry and operator...')
    proj_geom = astra.create_proj_geom('parallel', 1.0, Ndetx, angles)
    vol_geom = astra.create_vol_geom(Nz,Nx)
    proj_id = astra.create_projector(PU,proj_geom,vol_geom)
    W = astra.OpTomo(proj_id)
    
    # initial reconstruction
    print('Initial reconstruction...')
    recsirt = SIRT.recon(sinogram, 200, proj_geom, vol_geom, PU)
    sf = np.max(recsirt)
    p = p/sf
    if Ndety==1:
        sinogram = p.reshape([Nan, Ndetx])
    else:
        sinogram = p.reshape([Nan, Ndetx, Ndety])
    recsirt = recsirt/sf
    
    # set initial TVR-DART parameters
    K = K*np.ones(Ngv-1)
    gv = np.linspace(0, 1, Ngv,True)
    param0 = gv2param(gv,K)
    
    # Esimating parameter using a small section of the dataset
    print('Estimation of optimal parameters...')
    if Ndety==1:
        Segrec,param_esti = joint(W,p, recsirt, param0 ,lamb)
    else:
        Elist = np.sum(recsirt,axis=(0,2))
        index = np.argmax(Elist)
    
        index1 = np.max(np.hstack((0,index-1)))
        index2 = np.min(np.hstack((index+1,Ndety-1)))
    
        x0_esti = recsirt[:,index1:index2+1,:]
        sinogram_esti = sinogram[:,:,index1:index2+1]
        p_esti = sinogram_esti.reshape(Nan*Ndetx*(index2-index1+1))
    
        Segrec,param_esti = joint(W,p_esti, x0_esti, param0 ,lamb)
    
    # Reconstruction with estimated parameter
    print('Reconstruction with estimated parameters...')
    Segrec,rec = recon(W,p, recsirt, param_esti, lamb, Niter, epsilon)
    [gv,K] = param2gv(param_esti)
    param_esti = gv2param(gv*sf,K)
    Segrec = Segrec*sf;
    return Segrec, param_esti;
コード例 #8
0
ファイル: astra_plugin.py プロジェクト: h4n5h4n5/pynnfbp
 def initialize(self,
                cfg,
                hqrecfiles,
                z_id,
                traindir,
                nlinear=2,
                npick=100,
                extra_ids=None,
                angle_dependent=False):
     if extra_ids == None:
         extra_ids = []
     self.extra_s = [astra.data2d.get_shared(i) for i in extra_ids]
     self.W = astra.OpTomo(cfg['ProjectorId'])
     self.npick = npick
     self.td = traindir
     mkdir_p(traindir)
     self.rec = tifffile.imread(sorted(glob.glob(hqrecfiles))[z_id])
     self.bck = (self.W.T * np.ones_like(self.s) <
                 self.s.shape[0] - 0.5).reshape(self.v.shape)
     self.outfn = traindir + os.sep + "train_{:05d}.mat".format(z_id)
     self.z_id = z_id
     fs = self.s.shape[1]
     if fs % 2 == 0:
         fs += 1
     mf = int(fs / 2)
     w = 1
     c = mf
     bas = np.zeros(fs, dtype=np.float32)
     self.basis = []
     count = 0
     while c < fs:
         bas[:] = 0
         l = c
         r = c + w
         if r > fs: r = fs
         bas[l:r] = 1
         if l != 0:
             l = fs - c - w
             r = l + w
             if l < 0: l = 0
             bas[l:r] = 1
         self.basis.append(bas.copy())
         c += w
         count += 1
         if count > nlinear:
             w = 2 * w
     if angle_dependent == "True":
         basis_ang = []
         bas_ang = np.zeros((self.s.shape[0], fs), dtype=np.float32)
         for bas in self.basis:
             for i in range(self.s.shape[0]):
                 bas_ang[i] = bas
                 basis_ang.append(bas_ang.copy())
                 bas_ang[i][:] = 0
         self.basis = basis_ang
     self.nf = len(self.basis)
コード例 #9
0
    def Algorithm_TV_regularized(self,
                                 beam_geometry,
                                 lam,
                                 lower_bound,
                                 upper_bound,
                                 projector_type='cuda',
                                 num_inner_iter=100,
                                 num_main_iter=100,
                                 recon_dimension=None,
                                 source_origin_cm=None,
                                 detector_origin_cm=None,
                                 print_progress=True):
        '''
        Inner iterations:
            ---
        Main iterations:
            ---
        '''

        sinogram = self.sino_pad_roi
        source_origin_cm = source_origin_cm
        detector_origin_cm = detector_origin_cm

        proj_id = self.create_projector_id(sinogram, beam_geometry,
                                           projector_type, recon_dimension,
                                           source_origin_cm,
                                           detector_origin_cm)
        p = astra.OpTomo(proj_id)
        f = tvtomo.FISTA(p,
                         lam,
                         num_inner_iter,
                         bmin=lower_bound,
                         bmax=upper_bound)

        start = time.time()
        rec_tv = f.reconstruct(self.sino_pad_roi,
                               num_main_iter,
                               progress=print_progress)

        end = time.time()
        print('TV-FISTA: ' + beam_geometry + ', ' + projector_type + ', ' +
              str(num_main_iter) + ' iterations, ' + 'elapsed time: ' +
              str(end - start) + ' seconds')

        # Extract the horizontal pixel profile from centerline region
        TV_cl_h_profile = rec_tv[int(rec_tv.shape[0] / 2), :]

        # Plot reconstructed image
        plt.figure()
        plt.imshow(rec_tv)
        plt.title('Reconstruction: TV FISTA ' + beam_geometry)
        plt.colorbar()
        plt.gray()

        return rec_tv, TV_cl_h_profile
コード例 #10
0
    def initialize(self,
                   cfg,
                   nlinear=2,
                   reg_wav=None,
                   wav_bas='haar',
                   reg_grad=None,
                   save_filter=None,
                   use_saved_filter=None,
                   reg_path=None,
                   reg_range=(1, 100, 10)):
        self.W = astra.OpTomo(cfg['ProjectorId'])
        self.reg_gr = reg_grad
        self.reg_wav = reg_wav
        self.save_filter = save_filter
        self.use_saved = use_saved_filter
        self.reg_path = reg_path
        self.reg_range = reg_range
        self.wav_bas = wav_bas

        if not self.use_saved:
            self.bck = (self.W.T * np.ones_like(self.s) <
                        self.s.shape[0] - 0.5).reshape(self.v.shape)

        if self.reg_path:
            self.reg_gr = 1.

        fs = self.s.shape[1]
        if fs % 2 == 0:
            fs += 1
        mf = int(fs / 2)

        w = 1
        c = mf

        bas = np.zeros(fs, dtype=np.float32)
        self.basis = []
        count = 0
        while c < fs:
            bas[:] = 0
            l = c
            r = c + w
            if r > fs: r = fs
            bas[l:r] = 1
            if l != 0:
                l = fs - c - w
                r = l + w
                if l < 0: l = 0
                bas[l:r] = 1
            self.basis.append(bas.copy())
            c += w
            count += 1
            if count > nlinear:
                w = 2 * w
        self.nf = len(self.basis)
コード例 #11
0
    def initialize(self, cfg):
        self.W = astra.OpTomo(cfg['ProjectorId'])
        self.vid = cfg['ReconstructionDataId']
        self.sid = cfg['ProjectionDataId']

        try:
            v = astra.data2d.get_shared(self.vid)
            s = astra.data2d.get_shared(self.sid)
            self.data_mod = astra.data2d
        except Exception:
            v = astra.data3d.get_shared(self.vid)
            s = astra.data3d.get_shared(self.sid)
            self.data_mod = astra.data3d
コード例 #12
0
 def initialize(self,
                cfg,
                tv_reg,
                fgp_iters=100,
                bmin=-np.inf,
                bmax=np.inf,
                print_progress=False,
                fgp_nthreads=None):
     self.w = astra.OpTomo(self.pid)
     self.tv = tv_reg
     self.fgp_iters = fgp_iters
     self.pr = print_progress
     self.bmin = bmin
     self.bmax = bmax
     self.nthreads = fgp_nthreads
コード例 #13
0
ファイル: astraOP.py プロジェクト: sycraft/ToMoBAR
 def __init__(self, DetectorsDim, AnglesVec, ObjSize, device):
     self.DetectorsDim = DetectorsDim
     self.AnglesVec = AnglesVec
     self.ObjSize = ObjSize
     self.proj_geom = astra.create_proj_geom('parallel', 1.0, DetectorsDim, AnglesVec)
     self.vol_geom = astra.create_vol_geom(ObjSize, ObjSize)
     if device == 'cpu':
         self.proj_id = astra.create_projector('line', self.proj_geom, self.vol_geom) # for CPU
         self.device = 1
     elif device == 'gpu':
         self.proj_id = astra.create_projector('cuda', self.proj_geom, self.vol_geom) # for GPU
         self.device = 0
     else:
         print ("Select between 'cpu' or 'gpu' for device")
     # add optomo operator
     self.A_optomo = astra.OpTomo(self.proj_id)
コード例 #14
0
ファイル: astraOP.py プロジェクト: sycraft/ToMoBAR
 def __init__(self, DetColumnCount, DetRowCount, AnglesVec, CenterRotOffset, ObjSize):
     self.ObjSize = ObjSize
     self.DetectorsDimV = DetRowCount
     # define astra type geometry (scalar)
     # self.proj_geom = astra.create_proj_geom('parallel3d', 1.0, 1.0, DetRowCount, DetColumnCount, AnglesVec)
     # define astra type geometry (vector)
     vectors = vec_geom_init(AnglesVec, 1.0, 1.0, CenterRotOffset)
     self.proj_geom = astra.create_proj_geom('parallel3d_vec', DetRowCount, DetColumnCount, vectors)
     if type(ObjSize) == tuple:
         Y,X,Z = [int(i) for i in ObjSize]
     else:
         Y=X=ObjSize
         Z=DetRowCount
     self.vol_geom = astra.create_vol_geom(Y,X,Z)
     self.proj_id = astra.create_projector('cuda3d', self.proj_geom, self.vol_geom) # for GPU
     self.A_optomo = astra.OpTomo(self.proj_id)
コード例 #15
0
def generateAmatrix(proj_params, miscalib, vol_params, gpu_idx):
    """
    Generate the A matrix using spot operators
    Inputs: proj_params: Dictionary of the projection related parameters 
            miscalib: Dictionary of miscalibration paramaters such as center of offset rotation and/or tilt 
            vol_params: Dictionary of reconstruction volume parameters 
            gpu_idx: List of gpus to use 
    """
    if (proj_params['type'] == 'par'):
        proj_geom, vol_geom = createGeomPar(proj_params, miscalib, vol_params,
                                            gpu_idx)
    elif (proj_params['type'] == 'cone'):
        proj_geom, vol_geom = createGeomCone(proj_params, miscalib, vol_params,
                                             gpu_idx)
    elif (proj_params['type'] == 'par_euler'):
        proj_geom, vol_geom = createGeomParEuler(proj_params, miscalib,
                                                 vol_params, gpu_idx)
    else:
        print('Unrecognized type for projector')

    proj_id = astra.create_projector('cuda3d', proj_geom, vol_geom)
    #opTomo based Projection function
    A = astra.OpTomo(proj_id)
    return A
コード例 #16
0
ファイル: s017_OpTomo.py プロジェクト: gbzan/astra-toolbox
# -----------------------------------------------------------------------

import astra
import numpy as np
import scipy.sparse.linalg

vol_geom = astra.create_vol_geom(256, 256)
proj_geom = astra.create_proj_geom('parallel', 1.0, 384, np.linspace(0,np.pi,180,False))

# As before, create a sinogram from a phantom
import scipy.io
P = scipy.io.loadmat('phantom.mat')['phantom256']
proj_id = astra.create_projector('cuda',proj_geom,vol_geom)

# construct the OpTomo object
W = astra.OpTomo(proj_id)

sinogram = W * P
sinogram = sinogram.reshape([180, 384])

import pylab
pylab.gray()
pylab.figure(1)
pylab.imshow(P)
pylab.figure(2)
pylab.imshow(sinogram)

# Run the lsqr linear solver
output = scipy.sparse.linalg.lsqr(W, sinogram.ravel(), iter_lim=150)
rec = output[0].reshape([256, 256])
コード例 #17
0
import pylab as pl
pl.gray()

# Run 03_generate_projections_parallel.py and 04_generate_projections_cone first

projs = foam_ct_phantom.load_projections('test_projs_par.h5')

vol_geom = foam_ct_phantom.VolumeGeometry(256, 256, 256, 3 / 256)

proj_geom = foam_ct_phantom.ParallelGeometry.from_file('test_projs_par.h5')

pg = proj_geom.to_astra(single_slice=True)
vg = vol_geom.to_astra(single_slice=True)

pid = astra.create_projector('cuda', pg, vg)
w = astra.OpTomo(pid)

mid_slice = w.reconstruct('FBP_CUDA', projs[:, projs.shape[1] // 2])

pl.imshow(mid_slice)
pl.show()

astra.projector.delete(pid)

projs = foam_ct_phantom.load_projections('test_projs_cone.h5')

proj_geom = foam_ct_phantom.ConeGeometry.from_file('test_projs_cone.h5',
                                                   usecuda=False)

pg3d = proj_geom.to_astra()
vg3d = vol_geom.to_astra()
コード例 #18
0
 def initialize(self,cfg, Relaxation = 1):
     self.W = astra.OpTomo(cfg['ProjectorId'])
     self.vid = cfg['ReconstructionDataId']
     self.sid = cfg['ProjectionDataId']
     self.rel = Relaxation
コード例 #19
0
# 0. parameter settings of fanflat geometry
detector_num = img.shape[0] * 2
views = 540
detector_size = 1
source_origion = 800
origion_det = 200


# 1. creat geometries
proj_geom = astra.create_proj_geom('fanflat', detector_size, detector_num, np.linspace(0, 2 * np.pi, views, False), source_origion, origion_det)
vol_geom = astra.create_vol_geom(img.shape[0], img.shape[0])

# 2. use OpTomo to get W and then sinogram and image
projector_id = astra.create_projector('cuda', proj_geom, vol_geom)
W = astra.OpTomo(projector_id)
print W.shape
sinogram = W * img
haha = W.T * sinogram
haha = np.reshape(haha, (img.shape[0], img.shape[0]))
sinogram = np.reshape(sinogram, (views, detector_num))

# sino = sinogram
# plt.figure('phamtom'), plt.imshow(img, cmap=plt.cm.gray)
# plt.figure('sinogram'), plt.imshow(sino, cmap=plt.cm.gray)

# plt.figure('slice')
# plt.plot(sino[50, :], label='50')
# plt.plot(sino[100, :], label='100')
# plt.plot(sino[150, :], label='150')
# plt.plot(sino[200, :], label='200')
コード例 #20
0
 def initialize(self, cfg, its_PM, Lambda):
     self.W = astra.OpTomo(cfg['ProjectorId'])
     self.vid = cfg['ReconstructionDataId']
     self.sid = cfg['ProjectionDataId']
     self.its_PM = its_PM
     self.Lambda = Lambda
コード例 #21
0
ファイル: tomo.py プロジェクト: cicwi/PyRMLSeg
 def initialize_projector(self):
     self.proj_id = astra.create_projector("linear", self.proj_geom, self.vol_geom)
     self.W = astra.OpTomo(self.proj_id)
コード例 #22
0
ファイル: astrafp.py プロジェクト: dmpelt/lorentz-phantom
def fp(im, ang):
    proj_geom = astra.create_proj_geom('parallel', 1.0, im.shape[0], np.array([ang,0]))
    vol_geom = astra.create_vol_geom(im.shape)
    w = astra.OpTomo('cuda',proj_geom,vol_geom)
    fpim = w*im
    return w[0:im.shape[0]]
コード例 #23
0
ファイル: astra_plugin.py プロジェクト: h4n5h4n5/pynnfbp
 def initialize(self,
                cfg,
                filter_file,
                nlinear=2,
                extra_ids=None,
                angle_dependent=False):
     if extra_ids == None:
         extra_ids = []
     self.extra_s = [astra.data2d.get_shared(i) for i in extra_ids]
     self.W = astra.OpTomo(cfg['ProjectorId'])
     fs = self.s.shape[1]
     if fs % 2 == 0:
         fs += 1
     mf = int(fs / 2)
     w = 1
     c = mf
     bas = np.zeros(fs, dtype=np.float32)
     self.basis = []
     count = 0
     while c < fs:
         bas[:] = 0
         l = c
         r = c + w
         if r > fs: r = fs
         bas[l:r] = 1
         if l != 0:
             l = fs - c - w
             r = l + w
             if l < 0: l = 0
             bas[l:r] = 1
         self.basis.append(bas.copy())
         c += w
         count += 1
         if count > nlinear:
             w = 2 * w
     if angle_dependent == "True":
         basis_ang = []
         bas_ang = np.zeros((self.s.shape[0], fs), dtype=np.float32)
         for bas in self.basis:
             for i in range(self.s.shape[0]):
                 bas_ang[i] = bas
                 basis_ang.append(bas_ang.copy())
                 bas_ang[i][:] = 0
         self.basis = basis_ang
     self.nf = len(self.basis)
     fl = sio.loadmat(filter_file)
     self.l1 = fl['l1']
     self.l2 = fl['l2'].transpose()
     minmax = fl['minmax'][0]
     minL = minmax[0]
     maxL = minmax[1]
     self.minIn = minmax[2]
     self.maxIn = minmax[3]
     mindivmax = minL / (maxL - minL)
     mindivmax[np.isnan(mindivmax)] = 0
     mindivmax[np.isinf(mindivmax)] = 0
     divmaxmin = 1. / (maxL - minL)
     divmaxmin[np.isnan(divmaxmin)] = 0
     divmaxmin[np.isinf(divmaxmin)] = 0
     nHid = self.l1.shape[1]
     nsl = len(extra_ids) + 1
     dims = [
         nHid,
         nsl,
     ]
     dims.extend(self.basis[0].shape)
     self.filters = np.empty(dims)
     self.offsets = np.empty(nHid)
     for i in range(nHid):
         wv = (2 * self.l1[0:self.l1.shape[0] - 1, i] *
               divmaxmin).transpose()
         self.filters[i] = np.zeros(dims[1:])
         for t, bas in enumerate(self.basis):
             for l in range(nsl):
                 self.filters[i, l] += wv[t + l * len(self.basis)] * bas
         self.offsets[i] = 2 * np.dot(self.l1[0:self.l1.shape[0] - 1, i],
                                      mindivmax.transpose()) + np.sum(
                                          self.l1[:, i])