コード例 #1
0
    def test_known_regression(self):
        # prevent regression of known bug
        self.assertEqual(mag_to_absmag(1., MAGIC_NUMBER), MAGIC_NUMBER)
        self.assertEqual(mag_to_absmag(MAGIC_NUMBER, MAGIC_NUMBER), MAGIC_NUMBER)
        self.assertEqual(
            np.all(mag_to_absmag(MAGIC_NUMBER, MAGIC_NUMBER, 1.) == (MAGIC_NUMBER, MAGIC_NUMBER)), True)
        self.assertEqual(
            np.all(mag_to_fakemag(MAGIC_NUMBER, MAGIC_NUMBER, 1.) == (MAGIC_NUMBER, MAGIC_NUMBER)), True)

        self.assertEqual(mag_to_fakemag(1., MAGIC_NUMBER), MAGIC_NUMBER)
        self.assertEqual(mag_to_fakemag(MAGIC_NUMBER, MAGIC_NUMBER), MAGIC_NUMBER)

        self.assertEqual(fakemag_to_pc(1., MAGIC_NUMBER).value, MAGIC_NUMBER)
        self.assertEqual(fakemag_to_pc(-1., 2.).value, MAGIC_NUMBER)
        self.assertEqual(absmag_to_pc(1., MAGIC_NUMBER).value, MAGIC_NUMBER)
コード例 #2
0
except KeyError:
    parallax = apogeegaia_file["parallax"]

parallax_error = apogeegaia_file["parallax_error"]

# set negative parallax after constant offset correction to np.nan
parallax_error[(parallax < 0) & (parallax > 1e10)] = np.nan
parallax[(parallax < 0) & (parallax > 1e10)] = np.nan

# inference
net = load_folder(astronn_dist_model)
# pred, pred_err = net.predict(all_spec)
pred, pred_err = net.predict_dataset(fits.getdata(contspac_file_name))

# unit conversion
nn_dist, nn_dist_err = fakemag_to_pc(pred[:, 0], corrected_K,
                                     pred_err["total"][:, 0])
_, nn_dist_model_err = fakemag_to_pc(pred[:, 0], corrected_K,
                                     pred_err["model"][:, 0])
nn_parallax, nn_parallax_err = fakemag_to_parallax(pred[:, 0], corrected_K,
                                                   pred_err["total"][:, 0])
_, nn_parallax_model_err = fakemag_to_parallax(pred[:, 0], corrected_K,
                                               pred_err["model"][:, 0])

# remove astropy units
nn_dist = nn_dist.value
nn_dist_err = nn_dist_err.value
nn_dist_model_err = nn_dist_model_err.value
nn_parallax = nn_parallax.value
nn_parallax_err = nn_parallax_err.value
nn_parallax_model_err = nn_parallax_model_err.value
コード例 #3
0
    def test_astrometry_conversion(self):
        # Example data of [Vega, Sirius]
        absmag = np.array([0.582, 1.42])
        mag = np.array([0.026, -1.46])
        parallax = np.array([130.23, 379.21])
        parallax_err = np.array([0.36, 1.58])

        # Absmag related test
        pc = absmag_to_pc(absmag, mag)
        npt.assert_almost_equal(pc.value, 1000 / parallax, decimal=1)
        npt.assert_almost_equal(mag_to_absmag(mag, parallax * u.mas),
                                absmag,
                                decimal=1)
        self.assertEqual(
            np.any(absmag_to_fakemag(MAGIC_NUMBER) == MAGIC_NUMBER), True)
        absmag_test, absmag_err_test = mag_to_absmag(mag, parallax * u.mas,
                                                     parallax_err)
        absmag_test_uniterr, absmag_err_test_uniterr = mag_to_absmag(
            mag, parallax * u.mas, parallax_err / 1000 * u.arcsec)
        absmag_test_arc, absmag_err_test_arc = mag_to_absmag(
            mag, parallax / 1000 * u.arcsec, parallax_err / 1000)
        absmag_test_unitless, absmag_err_test_unitless = mag_to_absmag(
            mag, parallax, parallax_err)

        # make sure unitless same as using astropy unit
        npt.assert_almost_equal(absmag_test, absmag_test_unitless)
        npt.assert_almost_equal(absmag_test, absmag_test_unitless)
        npt.assert_almost_equal(absmag_err_test, absmag_err_test_uniterr)

        # make sure astropy unit conversion works fine
        npt.assert_almost_equal(absmag_test, absmag_test_arc)
        npt.assert_almost_equal(absmag_err_test, absmag_err_test_arc)

        # =================== Fakemag related test ===================#
        # make sure these function did identity transform
        npt.assert_almost_equal(fakemag_to_absmag(absmag_to_fakemag(absmag)),
                                absmag,
                                decimal=1)

        # we can tests this after identity transformation confirmed
        npt.assert_almost_equal(fakemag_to_pc(absmag_to_fakemag(absmag),
                                              mag).value,
                                1000 / parallax,
                                decimal=1)
        npt.assert_almost_equal(fakemag_to_pc(
            mag_to_fakemag(mag, parallax * u.mas), mag).value,
                                1000 / parallax,
                                decimal=1)

        fakemag_test, fakemag_err_test = mag_to_fakemag(
            mag, parallax * u.mas, parallax_err)
        fakemag_test_uniterr, fakemag_err_test_uniterr = mag_to_fakemag(
            mag, parallax * u.mas, parallax_err / 1000 * u.arcsec)
        fakemag_test_unitless, fakemag_err_test_unitless = mag_to_fakemag(
            mag, parallax, parallax_err)
        fakemag_test_arc, fakemag_err_test_arc = mag_to_fakemag(
            mag, parallax / 1000 * u.arcsec, parallax_err / 1000)

        pc_result, pc_result_err = fakemag_to_pc(fakemag_test, mag,
                                                 fakemag_err_test)
        pc_result_arc, pc_result_err_arc = fakemag_to_pc(
            fakemag_test_arc, mag, fakemag_err_test_arc)

        # Analytically solution checkung
        npt.assert_almost_equal(pc_result_err.value,
                                (parallax_err / parallax) * pc.value,
                                decimal=1)

        # make sure unitless same as using astropy unit
        npt.assert_almost_equal(fakemag_test, fakemag_test_unitless)
        npt.assert_almost_equal(fakemag_err_test, fakemag_err_test_uniterr)
        npt.assert_almost_equal(fakemag_err_test, fakemag_err_test_unitless)

        # make sure astropy unit conversion works fine
        npt.assert_almost_equal(fakemag_test, fakemag_test_arc)
        npt.assert_almost_equal(fakemag_err_test, fakemag_err_test_arc)
        npt.assert_almost_equal(pc_result.value, pc_result_arc.value)
        npt.assert_almost_equal(pc_result_err.value, pc_result_err_arc.value)

        # check gaia default dr
        dr = gaia_default_dr()
        self.assertEqual(dr, 1)
        dr = gaia_default_dr(dr=3)
        self.assertEqual(dr, 3)
コード例 #4
0
apogeegaia_file = fits.getdata(gaia_rowmatch_f)
# add the offset we found for inv var weighting parallax
parallax = apogeegaia_file["parallax"] + 0.052
parallax_error = apogeegaia_file["parallax_error"]

# set negative parallax after constant offset correction to np.nan
parallax[(parallax < 0)] = np.nan
parallax_error[(parallax < 0)] = np.nan

# inference
net = load_folder(astronn_dist_model)
pred, pred_err = net.test(all_spec)
pred[:, 0][pred[:, 0] == 0.] = np.nan

# unit conversion
nn_dist, nn_dist_err = fakemag_to_pc(pred[:, 0], corrected_K,
                                     pred_err['total'][:, 0])
_, nn_dist_model_err = fakemag_to_pc(pred[:, 0], corrected_K,
                                     pred_err['model'][:, 0])
nn_parallax, nn_parallax_err = fakemag_to_parallax(pred[:, 0], corrected_K,
                                                   pred_err['total'][:, 0])
_, nn_parallax_model_err = fakemag_to_parallax(pred[:, 0], corrected_K,
                                               pred_err['model'][:, 0])

# remove astropy units
nn_dist = nn_dist.value
nn_dist_err = nn_dist_err.value
nn_dist_model_err = nn_dist_model_err.value
nn_parallax = nn_parallax.value
nn_parallax_err = nn_parallax_err.value
nn_parallax_model_err = nn_parallax_model_err.value
コード例 #5
0
    def test_arXiv_1902_08634 (self):
        """
        astroNN spectrophotometric distance
        """
        from astroNN.apogee import visit_spectra, apogee_continuum
        from astroNN.gaia import extinction_correction, fakemag_to_pc
        from astropy.io import fits

        # first model
        models_url = ["https://github.com/henrysky/astroNN_gaia_dr2_paper/trunk/astroNN_no_offset_model",
                      "https://github.com/henrysky/astroNN_gaia_dr2_paper/trunk/astroNN_constant_model",
                      "https://github.com/henrysky/astroNN_gaia_dr2_paper/trunk/astroNN_multivariate_model"]

        for model_url in models_url:
            download_args = ["svn", "export", model_url]
            res = subprocess.Popen(download_args, stdout=subprocess.PIPE)
            output, _error = res.communicate()
            if not _error:
                pass
            else:
                raise ConnectionError(f"Error downloading the models {model_url}")

        opened_fits = fits.open(visit_spectra(dr=14, location=4405, apogee='2M19060637+4717296'))
        spectrum = opened_fits[1].data
        spectrum_err = opened_fits[2].data
        spectrum_bitmask = opened_fits[3].data

        # using default continuum and bitmask values to continuum normalize
        norm_spec, norm_spec_err = apogee_continuum(spectrum, spectrum_err,
                                                    bitmask=spectrum_bitmask, dr=14)
        # correct for extinction
        K = extinction_correction(opened_fits[0].header['K'], opened_fits[0].header['AKTARG'])

        # ===========================================================================================#
        # load neural net
        neuralnet = load_folder('astroNN_no_offset_model')
        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(norm_spec)
        # convert prediction in fakemag to distance
        pc, pc_error = fakemag_to_pc(pred[:, 0], K, pred_err['total'][:, 0])
        # assert distance is close enough
        # http://simbad.u-strasbg.fr/simbad/sim-id?mescat.distance=on&Ident=%406876647&Name=KIC+10196240&submit=display+selected+measurements#lab_meas
        # no offset correction so further away
        self.assertEqual(pc.value < 1250, True)
        self.assertEqual(pc.value > 1100, True)

        # ===========================================================================================#
        # load neural net
        neuralnet = load_folder('astroNN_constant_model')
        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(np.hstack([norm_spec, np.zeros((norm_spec.shape[0], 4))]))
        # convert prediction in fakemag to distance
        pc, pc_error = fakemag_to_pc(pred[:, 0], K, pred_err['total'][:, 0])
        # assert distance is close enough
        # http://simbad.u-strasbg.fr/simbad/sim-id?mescat.distance=on&Ident=%406876647&Name=KIC+10196240&submit=display+selected+measurements#lab_meas
        self.assertEqual(pc.value < 1150, True)
        self.assertEqual(pc.value > 1000, True)

        # ===========================================================================================#
        # load neural net
        neuralnet = load_folder('astroNN_multivariate_model')
        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(np.hstack([norm_spec, np.zeros((norm_spec.shape[0], 4))]))
        # convert prediction in fakemag to distance
        pc, pc_error = fakemag_to_pc(pred[:, 0], K, pred_err['total'][:, 0])
        # assert distance is close enough
        # http://simbad.u-strasbg.fr/simbad/sim-id?mescat.distance=on&Ident=%406876647&Name=KIC+10196240&submit=display+selected+measurements#lab_meas
        self.assertEqual(pc.value < 1150, True)
        self.assertEqual(pc.value > 1000, True)