def test_categorical_crossentropy(self): y_pred = tf.Variable([[1., 0., 1.], [2., 1., 0.]]) y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 0.]]) y_pred_softmax = tf.nn.softmax(y_pred) # Truth with Magic number is wrong npt.assert_array_almost_equal(categorical_crossentropy(y_true, y_pred_softmax).eval(session=get_session()), categorical_crossentropy(y_true, y_pred, from_logits=True).eval( session=get_session()), decimal=3)
def test_categorical_crossentropy(self): # Truth with Magic number is wrong y_pred = tf.constant([[1., 0., 1.], [2., 1., 0.]]) y_true = tf.constant([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 0.]]) y_pred_softmax = tf.nn.softmax(y_pred) npt.assert_array_almost_equal(categorical_crossentropy(y_true, y_pred_softmax).numpy(), categorical_crossentropy(y_true, y_pred, from_logits=True).numpy(), decimal=3)