def cpu_gpu_check(): fallback_cpu, limit_gpu_mem = cpu_gpu_reader() if fallback_cpu is True: cpu_fallback() if isinstance(limit_gpu_mem, float) is True: gpu_memory_manage(ratio=limit_gpu_mem) else: gpu_memory_manage()
import tensorflow as tf import tensorflow.keras as tfk from astroNN.nn.losses import zeros_loss from astroNN.shared.nn_tools import gpu_memory_manage Input = tfk.layers.Input Dense = tfk.layers.Dense concatenate = tfk.layers.concatenate Conv1D = tfk.layers.Conv1D Conv2D = tfk.layers.Conv2D Flatten = tfk.layers.Flatten Model = tfk.models.Model Sequential = tfk.models.Sequential gpu_memory_manage() class LayerCase(unittest.TestCase): def test_MCDropout(self): print('==========MCDropout tests==========') from astroNN.nn.layers import MCDropout # Data preparation random_xdata = np.random.normal(0, 1, (100, 7514)) random_ydata = np.random.normal(0, 1, (100, 25)) input = Input(shape=[7514]) dense = Dense(100)(input) b_dropout = MCDropout(0.2, name='dropout')(dense) output = Dense(25)(b_dropout)