def testCompareToBijector(self):
     """Demonstrates equivalence between TD, Bijector approach and AR dist."""
     sample_shape = np.int32([4, 5])
     batch_shape = np.int32([])
     event_size = np.int32(2)
     with self.cached_session() as sess:
         batch_event_shape = np.concatenate([batch_shape, [event_size]],
                                            axis=0)
         sample0 = array_ops.zeros(batch_event_shape)
         affine = Affine(scale_tril=self._random_scale_tril(event_size))
         ar = autoregressive_lib.Autoregressive(self._normal_fn(affine),
                                                sample0,
                                                validate_args=True)
         ar_flow = MaskedAutoregressiveFlow(is_constant_jacobian=True,
                                            shift_and_log_scale_fn=lambda x:
                                            [None, affine.forward(x)],
                                            validate_args=True)
         td = transformed_distribution_lib.TransformedDistribution(
             distribution=normal_lib.Normal(loc=0., scale=1.),
             bijector=ar_flow,
             event_shape=[event_size],
             batch_shape=batch_shape,
             validate_args=True)
         x_shape = np.concatenate([sample_shape, batch_shape, [event_size]],
                                  axis=0)
         x = 2. * self._rng.random_sample(x_shape).astype(np.float32) - 1.
         td_log_prob_, ar_log_prob_ = sess.run(
             [td.log_prob(x), ar.log_prob(x)])
         self.assertAllClose(td_log_prob_, ar_log_prob_, atol=0., rtol=1e-6)
コード例 #2
0
    def testBatchMultivariateFullDynamic(self):
        with self.cached_session() as sess:
            x = array_ops.placeholder(dtypes.float32, name="x")
            mu = array_ops.placeholder(dtypes.float32, name="mu")
            scale_diag = array_ops.placeholder(dtypes.float32,
                                               name="scale_diag")

            x_value = np.array([[[1., 1]]], dtype=np.float32)
            mu_value = np.array([[1., -1]], dtype=np.float32)
            scale_diag_value = np.array([[2., 2]], dtype=np.float32)

            feed_dict = {
                x: x_value,
                mu: mu_value,
                scale_diag: scale_diag_value,
            }

            bijector = Affine(shift=mu, scale_diag=scale_diag)
            self.assertAllClose([[[3., 1]]],
                                sess.run(bijector.forward(x), feed_dict))
            self.assertAllClose([[[0., 1]]],
                                sess.run(bijector.inverse(x), feed_dict))
            self.assertAllClose(
                [-np.log(4)],
                sess.run(bijector.inverse_log_det_jacobian(x, event_ndims=1),
                         feed_dict))
コード例 #3
0
 def testNoBatchMultivariateRaisesWhenSingular(self):
     with self.cached_session():
         mu = [1., -1]
         bijector = Affine(
             shift=mu,
             # Has zero on the diagonal.
             scale_diag=[0., 1],
             validate_args=True)
         with self.assertRaisesOpError("diagonal part must be non-zero"):
             bijector.forward([1., 1.]).eval()
コード例 #4
0
    def testNoBatchMultivariateIdentity(self):
        with self.cached_session() as sess:
            placeholder = array_ops.placeholder(dtypes.float32, name="x")

            def static_run(fun, x, **kwargs):
                return fun(x, **kwargs).eval()

            def dynamic_run(fun, x_value, **kwargs):
                x_value = np.array(x_value)
                return sess.run(fun(placeholder, **kwargs),
                                feed_dict={placeholder: x_value})

            for run in (static_run, dynamic_run):
                mu = [1., -1]
                # Multivariate
                # Corresponds to scale = [[1., 0], [0, 1.]]
                bijector = Affine(shift=mu)
                x = [1., 1]
                # matmul(sigma, x) + shift
                # = [-1, -1] + [1, -1]
                self.assertAllClose([2., 0], run(bijector.forward, x))
                self.assertAllClose([0., 2], run(bijector.inverse, x))

                # x is a 2-batch of 2-vectors.
                # The first vector is [1, 1], the second is [-1, -1].
                # Each undergoes matmul(sigma, x) + shift.
                x = [[1., 1], [-1., -1]]
                self.assertAllClose([[2., 0], [0., -2]],
                                    run(bijector.forward, x))
                self.assertAllClose([[0., 2], [-2., 0]],
                                    run(bijector.inverse, x))
                self.assertAllClose(
                    0., run(bijector.inverse_log_det_jacobian,
                            x,
                            event_ndims=1))
コード例 #5
0
    def testIdentityAndDiagWithTriL(self):
        with self.cached_session() as sess:
            placeholder = array_ops.placeholder(dtypes.float32, name="x")

            def static_run(fun, x, **kwargs):
                return fun(x, **kwargs).eval()

            def dynamic_run(fun, x_value, **kwargs):
                x_value = np.array(x_value)
                return sess.run(fun(placeholder, **kwargs),
                                feed_dict={placeholder: x_value})

            for run in (static_run, dynamic_run):
                mu = -1.
                # scale = [[3., 0], [2, 4]]
                bijector = Affine(shift=mu,
                                  scale_identity_multiplier=1.0,
                                  scale_diag=[1., 2.],
                                  scale_tril=[[1., 0], [2., 1]])
                x = [[1., 2]]  # One multivariate sample.
                self.assertAllClose([[2., 9]], run(bijector.forward, x))
                self.assertAllClose([[2 / 3., 5 / 12.]],
                                    run(bijector.inverse, x))
                self.assertAllClose(
                    -np.log(12.),
                    run(bijector.inverse_log_det_jacobian, x, event_ndims=1))
コード例 #6
0
  def testMinEventNdimsShapeChangingRemoveDims(self):
    chain = Chain([ShapeChanging(3, 0)])
    self.assertEqual(3, chain.forward_min_event_ndims)
    self.assertEqual(0, chain.inverse_min_event_ndims)

    chain = Chain([ShapeChanging(3, 0), Affine()])
    self.assertEqual(3, chain.forward_min_event_ndims)
    self.assertEqual(0, chain.inverse_min_event_ndims)

    chain = Chain([Affine(), ShapeChanging(3, 0)])
    self.assertEqual(4, chain.forward_min_event_ndims)
    self.assertEqual(1, chain.inverse_min_event_ndims)

    chain = Chain([ShapeChanging(3, 0), ShapeChanging(3, 0)])
    self.assertEqual(6, chain.forward_min_event_ndims)
    self.assertEqual(0, chain.inverse_min_event_ndims)
コード例 #7
0
    def testTriLWithVDVTUpdateNoDiagonal(self):
        with self.cached_session() as sess:
            placeholder = array_ops.placeholder(dtypes.float32, name="x")

            def static_run(fun, x, **kwargs):
                return fun(x, **kwargs).eval()

            def dynamic_run(fun, x_value, **kwargs):
                x_value = np.array(x_value)
                return sess.run(fun(placeholder, **kwargs),
                                feed_dict={placeholder: x_value})

            for run in (static_run, dynamic_run):
                mu = -1.
                # Corresponds to scale = [[6, 0, 0], [1, 3, 0], [2, 3, 5]]
                bijector = Affine(shift=mu,
                                  scale_tril=[[2., 0, 0], [1, 3, 0], [2, 3,
                                                                      4]],
                                  scale_perturb_diag=None,
                                  scale_perturb_factor=[[2., 0], [0., 0],
                                                        [0, 1]])
                bijector_ref = Affine(shift=mu,
                                      scale_tril=[[6., 0, 0], [1, 3, 0],
                                                  [2, 3, 5]])

                x = [1., 2, 3]  # Vector.
                self.assertAllClose([5., 6, 22], run(bijector.forward, x))
                self.assertAllClose(run(bijector_ref.forward, x),
                                    run(bijector.forward, x))
                self.assertAllClose([1 / 3., 8 / 9., 4 / 30.],
                                    run(bijector.inverse, x))
                self.assertAllClose(run(bijector_ref.inverse, x),
                                    run(bijector.inverse, x))
                self.assertAllClose(
                    -np.log(90.),
                    run(bijector.inverse_log_det_jacobian, x, event_ndims=1))
                self.assertAllClose(
                    run(bijector.inverse_log_det_jacobian, x, event_ndims=1),
                    run(bijector_ref.inverse_log_det_jacobian,
                        x,
                        event_ndims=1))
コード例 #8
0
    def testIdentityWithVDVTUpdate(self):
        with self.cached_session() as sess:
            placeholder = array_ops.placeholder(dtypes.float32, name="x")

            def static_run(fun, x, **kwargs):
                return fun(x, **kwargs).eval()

            def dynamic_run(fun, x_value, **kwargs):
                x_value = np.array(x_value)
                return sess.run(fun(placeholder, **kwargs),
                                feed_dict={placeholder: x_value})

            for run in (static_run, dynamic_run):
                mu = -1.
                # Corresponds to scale = [[10, 0, 0], [0, 2, 0], [0, 0, 3]]
                bijector = Affine(shift=mu,
                                  scale_identity_multiplier=2.,
                                  scale_perturb_diag=[2., 1],
                                  scale_perturb_factor=[[2., 0], [0., 0],
                                                        [0, 1]])
                bijector_ref = Affine(shift=mu, scale_diag=[10., 2, 3])

                x = [1., 2, 3]  # Vector.
                self.assertAllClose([9., 3, 8], run(bijector.forward, x))
                self.assertAllClose(run(bijector_ref.forward, x),
                                    run(bijector.forward, x))

                self.assertAllClose([0.2, 1.5, 4 / 3.],
                                    run(bijector.inverse, x))
                self.assertAllClose(run(bijector_ref.inverse, x),
                                    run(bijector.inverse, x))
                self.assertAllClose(
                    -np.log(60.),
                    run(bijector.inverse_log_det_jacobian, x, event_ndims=1))
                self.assertAllClose(
                    run(bijector.inverse_log_det_jacobian, x, event_ndims=1),
                    run(bijector_ref.inverse_log_det_jacobian,
                        x,
                        event_ndims=1))
コード例 #9
0
  def testChainAffineExp(self):
    scale_diag = np.array([1., 2., 3.], dtype=np.float32)
    chain = Chain([Affine(scale_diag=scale_diag), Exp()])
    x = [0., np.log(2., dtype=np.float32), np.log(3., dtype=np.float32)]
    y = [1., 4., 9.]
    self.assertAllClose(y, self.evaluate(chain.forward(x)))
    self.assertAllClose(x, self.evaluate(chain.inverse(y)))
    self.assertAllClose(
        np.log(6, dtype=np.float32) + np.sum(x),
        self.evaluate(chain.forward_log_det_jacobian(x, event_ndims=1)))

    self.assertAllClose(
        -np.log(6, dtype=np.float32) - np.sum(x),
        self.evaluate(chain.inverse_log_det_jacobian(y, event_ndims=1)))
コード例 #10
0
    def _testLegalInputs(self, shift=None, scale_params=None, x=None):
        def _powerset(x):
            s = list(x)
            return itertools.chain.from_iterable(
                itertools.combinations(s, r) for r in range(len(s) + 1))

        for args in _powerset(scale_params.items()):
            with self.cached_session():
                args = dict(args)

                scale_args = dict({"x": x}, **args)
                scale = self._makeScale(**scale_args)

                # We haven't specified enough information for the scale.
                if scale is None:
                    with self.assertRaisesRegexp(ValueError,
                                                 ("must be specified.")):
                        bijector = Affine(shift=shift, **args)
                else:
                    bijector = Affine(shift=shift, **args)
                    np_x = x
                    # For the case a vector is passed in, we need to make the shape
                    # match the matrix for matmul to work.
                    if x.ndim == scale.ndim - 1:
                        np_x = np.expand_dims(x, axis=-1)

                    forward = np.matmul(scale, np_x) + shift
                    if x.ndim == scale.ndim - 1:
                        forward = np.squeeze(forward, axis=-1)
                    self.assertAllClose(forward, bijector.forward(x).eval())

                    backward = np.linalg.solve(scale, np_x - shift)
                    if x.ndim == scale.ndim - 1:
                        backward = np.squeeze(backward, axis=-1)
                    self.assertAllClose(backward, bijector.inverse(x).eval())

                    scale *= np.ones(shape=x.shape[:-1], dtype=scale.dtype)
                    ildj = -np.log(np.abs(np.linalg.det(scale)))
                    # TODO(jvdillon): We need to make it so the scale_identity_multiplier
                    # case does not deviate in expected shape. Fixing this will get rid of
                    # these special cases.
                    if (ildj.ndim > 0 and
                        (len(scale_args) == 1 or
                         (len(scale_args) == 2 and scale_args.get(
                             "scale_identity_multiplier", None) is not None))):
                        ildj = np.squeeze(ildj[0])
                    elif ildj.ndim < scale.ndim - 2:
                        ildj = np.reshape(ildj, scale.shape[0:-2])
                    self.assertAllClose(
                        ildj,
                        bijector.inverse_log_det_jacobian(
                            x, event_ndims=1).eval())
 def testSampleAndLogProbConsistency(self):
     batch_shape = []
     event_size = 2
     with self.cached_session() as sess:
         batch_event_shape = np.concatenate([batch_shape, [event_size]],
                                            axis=0)
         sample0 = array_ops.zeros(batch_event_shape)
         affine = Affine(scale_tril=self._random_scale_tril(event_size))
         ar = autoregressive_lib.Autoregressive(self._normal_fn(affine),
                                                sample0,
                                                validate_args=True)
         self.run_test_sample_consistent_log_prob(sess.run,
                                                  ar,
                                                  radius=1.,
                                                  center=0.,
                                                  rtol=0.01)
コード例 #12
0
  def testMinEventNdimsChain(self):
    chain = Chain([Exp(), Exp(), Exp()])
    self.assertEqual(0, chain.forward_min_event_ndims)
    self.assertEqual(0, chain.inverse_min_event_ndims)

    chain = Chain([Affine(), Affine(), Affine()])
    self.assertEqual(1, chain.forward_min_event_ndims)
    self.assertEqual(1, chain.inverse_min_event_ndims)

    chain = Chain([Exp(), Affine()])
    self.assertEqual(1, chain.forward_min_event_ndims)
    self.assertEqual(1, chain.inverse_min_event_ndims)

    chain = Chain([Affine(), Exp()])
    self.assertEqual(1, chain.forward_min_event_ndims)
    self.assertEqual(1, chain.inverse_min_event_ndims)

    chain = Chain([Affine(), Exp(), Softplus(), Affine()])
    self.assertEqual(1, chain.forward_min_event_ndims)
    self.assertEqual(1, chain.inverse_min_event_ndims)
コード例 #13
0
    def testBatchMultivariateIdentity(self):
        with self.cached_session() as sess:
            placeholder = array_ops.placeholder(dtypes.float32, name="x")

            def static_run(fun, x, **kwargs):
                return fun(x, **kwargs).eval()

            def dynamic_run(fun, x_value, **kwargs):
                x_value = np.array(x_value)
                return sess.run(fun(placeholder, **kwargs),
                                feed_dict={placeholder: x_value})

            for run in (static_run, dynamic_run):
                mu = [[1., -1]]
                # Corresponds to 1 2x2 matrix, with twos on the diagonal.
                scale = 2.
                bijector = Affine(shift=mu, scale_identity_multiplier=scale)
                x = [[[1., 1]]]
                self.assertAllClose([[[3., 1]]], run(bijector.forward, x))
                self.assertAllClose([[[0., 1]]], run(bijector.inverse, x))
                self.assertAllClose(
                    -np.log(4),
                    run(bijector.inverse_log_det_jacobian, x, event_ndims=1))
コード例 #14
0
    def testIdentityWithDiagUpdate(self):
        with self.cached_session() as sess:
            placeholder = array_ops.placeholder(dtypes.float32, name="x")

            def static_run(fun, x, **kwargs):
                return fun(x, **kwargs).eval()

            def dynamic_run(fun, x_value, **kwargs):
                x_value = np.array(x_value)
                return sess.run(fun(placeholder, **kwargs),
                                feed_dict={placeholder: x_value})

            for run in (static_run, dynamic_run):
                mu = -1.
                # Corresponds to scale = 2
                bijector = Affine(shift=mu,
                                  scale_identity_multiplier=1.,
                                  scale_diag=[1., 1., 1.])
                x = [1., 2, 3]  # Three scalar samples (no batches).
                self.assertAllClose([1., 3, 5], run(bijector.forward, x))
                self.assertAllClose([1., 1.5, 2.], run(bijector.inverse, x))
                self.assertAllClose(
                    -np.log(2.**3),
                    run(bijector.inverse_log_det_jacobian, x, event_ndims=1))
コード例 #15
0
 def testProperties(self):
     with self.cached_session():
         mu = -1.
         # scale corresponds to 1.
         bijector = Affine(shift=mu)
         self.assertEqual("affine", bijector.name)