コード例 #1
0
 def testValidateArgs(self):
     with self.cached_session():
         with self.assertRaisesOpError("diagonal part must be non-zero"):
             scale = distribution_util.make_diag_scale(scale_diag=[[0., 1],
                                                                   [1.,
                                                                    1.]],
                                                       validate_args=True)
             scale.to_dense().eval()
コード例 #2
0
 def testAssertPositive(self):
     with self.cached_session():
         with self.assertRaisesOpError("diagonal part must be positive"):
             scale = distribution_util.make_diag_scale(scale_diag=[[-1., 1],
                                                                   [1.,
                                                                    1.]],
                                                       validate_args=True,
                                                       assert_positive=True)
             scale.to_dense().eval()
コード例 #3
0
    def _testLegalInputs(self, loc=None, shape_hint=None, scale_params=None):
        for args in _powerset(scale_params.items()):
            with self.cached_session():
                args = dict(args)

                scale_args = dict({
                    "loc": loc,
                    "shape_hint": shape_hint
                }, **args)
                expected_scale = _make_diag_scale(**scale_args)
                if expected_scale is None:
                    # Not enough shape information was specified.
                    with self.assertRaisesRegexp(ValueError,
                                                 ("is specified.")):
                        scale = distribution_util.make_diag_scale(**scale_args)
                        scale.to_dense().eval()
                else:
                    scale = distribution_util.make_diag_scale(**scale_args)
                    self.assertAllClose(expected_scale,
                                        scale.to_dense().eval())
コード例 #4
0
    def __init__(self,
                 loc=None,
                 scale_diag=None,
                 scale_identity_multiplier=None,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="MultivariateNormalDiag"):
        """Construct Multivariate Normal distribution on `R^k`.

    The `batch_shape` is the broadcast shape between `loc` and `scale`
    arguments.

    The `event_shape` is given by last dimension of the matrix implied by
    `scale`. The last dimension of `loc` (if provided) must broadcast with this.

    Recall that `covariance = scale @ scale.T`. A (non-batch) `scale` matrix is:

    ```none
    scale = diag(scale_diag + scale_identity_multiplier * ones(k))
    ```

    where:

    * `scale_diag.shape = [k]`, and,
    * `scale_identity_multiplier.shape = []`.

    Additional leading dimensions (if any) will index batches.

    If both `scale_diag` and `scale_identity_multiplier` are `None`, then
    `scale` is the Identity matrix.

    Args:
      loc: Floating-point `Tensor`. If this is set to `None`, `loc` is
        implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where
        `b >= 0` and `k` is the event size.
      scale_diag: Non-zero, floating-point `Tensor` representing a diagonal
        matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`,
        and characterizes `b`-batches of `k x k` diagonal matrices added to
        `scale`. When both `scale_identity_multiplier` and `scale_diag` are
        `None` then `scale` is the `Identity`.
      scale_identity_multiplier: Non-zero, floating-point `Tensor` representing
        a scaled-identity-matrix added to `scale`. May have shape
        `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scaled
        `k x k` identity matrices added to `scale`. When both
        `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is
        the `Identity`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      ValueError: if at most `scale_identity_multiplier` is specified.
    """
        parameters = dict(locals())
        with ops.name_scope(name) as name:
            with ops.name_scope("init",
                                values=[
                                    loc, scale_diag, scale_identity_multiplier
                                ]):
                # No need to validate_args while making diag_scale.  The returned
                # LinearOperatorDiag has an assert_non_singular method that is called by
                # the Bijector.
                scale = distribution_util.make_diag_scale(
                    loc=loc,
                    scale_diag=scale_diag,
                    scale_identity_multiplier=scale_identity_multiplier,
                    validate_args=False,
                    assert_positive=False)
        super(MultivariateNormalDiag,
              self).__init__(loc=loc,
                             scale=scale,
                             validate_args=validate_args,
                             allow_nan_stats=allow_nan_stats,
                             name=name)
        self._parameters = parameters
コード例 #5
0
    def __init__(self,
                 loc=None,
                 scale_diag=None,
                 scale_identity_multiplier=None,
                 scale_perturb_factor=None,
                 scale_perturb_diag=None,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="MultivariateNormalDiagPlusLowRank"):
        """Construct Multivariate Normal distribution on `R^k`.

    The `batch_shape` is the broadcast shape between `loc` and `scale`
    arguments.

    The `event_shape` is given by last dimension of the matrix implied by
    `scale`. The last dimension of `loc` (if provided) must broadcast with this.

    Recall that `covariance = scale @ scale.T`. A (non-batch) `scale` matrix is:

    ```none
    scale = diag(scale_diag + scale_identity_multiplier ones(k)) +
        scale_perturb_factor @ diag(scale_perturb_diag) @ scale_perturb_factor.T
    ```

    where:

    * `scale_diag.shape = [k]`,
    * `scale_identity_multiplier.shape = []`,
    * `scale_perturb_factor.shape = [k, r]`, typically `k >> r`, and,
    * `scale_perturb_diag.shape = [r]`.

    Additional leading dimensions (if any) will index batches.

    If both `scale_diag` and `scale_identity_multiplier` are `None`, then
    `scale` is the Identity matrix.

    Args:
      loc: Floating-point `Tensor`. If this is set to `None`, `loc` is
        implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where
        `b >= 0` and `k` is the event size.
      scale_diag: Non-zero, floating-point `Tensor` representing a diagonal
        matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`,
        and characterizes `b`-batches of `k x k` diagonal matrices added to
        `scale`. When both `scale_identity_multiplier` and `scale_diag` are
        `None` then `scale` is the `Identity`.
      scale_identity_multiplier: Non-zero, floating-point `Tensor` representing
        a scaled-identity-matrix added to `scale`. May have shape
        `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scaled
        `k x k` identity matrices added to `scale`. When both
        `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is
        the `Identity`.
      scale_perturb_factor: Floating-point `Tensor` representing a rank-`r`
        perturbation added to `scale`. May have shape `[B1, ..., Bb, k, r]`,
        `b >= 0`, and characterizes `b`-batches of rank-`r` updates to `scale`.
        When `None`, no rank-`r` update is added to `scale`.
      scale_perturb_diag: Floating-point `Tensor` representing a diagonal matrix
        inside the rank-`r` perturbation added to `scale`. May have shape
        `[B1, ..., Bb, r]`, `b >= 0`, and characterizes `b`-batches of `r x r`
        diagonal matrices inside the perturbation added to `scale`. When
        `None`, an identity matrix is used inside the perturbation. Can only be
        specified if `scale_perturb_factor` is also specified.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      ValueError: if at most `scale_identity_multiplier` is specified.
    """
        parameters = dict(locals())

        def _convert_to_tensor(x, name):
            return None if x is None else ops.convert_to_tensor(x, name=name)

        with ops.name_scope(name) as name:
            with ops.name_scope("init",
                                values=[
                                    loc, scale_diag, scale_identity_multiplier,
                                    scale_perturb_factor, scale_perturb_diag
                                ]):
                has_low_rank = (scale_perturb_factor is not None
                                or scale_perturb_diag is not None)
                scale = distribution_util.make_diag_scale(
                    loc=loc,
                    scale_diag=scale_diag,
                    scale_identity_multiplier=scale_identity_multiplier,
                    validate_args=validate_args,
                    assert_positive=has_low_rank)
                scale_perturb_factor = _convert_to_tensor(
                    scale_perturb_factor, name="scale_perturb_factor")
                scale_perturb_diag = _convert_to_tensor(
                    scale_perturb_diag, name="scale_perturb_diag")
                if has_low_rank:
                    scale = linalg.LinearOperatorLowRankUpdate(
                        scale,
                        u=scale_perturb_factor,
                        diag_update=scale_perturb_diag,
                        is_diag_update_positive=scale_perturb_diag is None,
                        is_non_singular=
                        True,  # Implied by is_positive_definite=True.
                        is_self_adjoint=True,
                        is_positive_definite=True,
                        is_square=True)
        super(MultivariateNormalDiagPlusLowRank,
              self).__init__(loc=loc,
                             scale=scale,
                             validate_args=validate_args,
                             allow_nan_stats=allow_nan_stats,
                             name=name)
        self._parameters = parameters
    def __init__(self,
                 loc=None,
                 scale_diag=None,
                 scale_identity_multiplier=None,
                 skewness=None,
                 tailweight=None,
                 distribution=None,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="MultivariateNormalLinearOperator"):
        """Construct VectorSinhArcsinhDiag distribution on `R^k`.

    The arguments `scale_diag` and `scale_identity_multiplier` combine to
    define the diagonal `scale` referred to in this class docstring:

    ```none
    scale = diag(scale_diag + scale_identity_multiplier * ones(k))
    ```

    The `batch_shape` is the broadcast shape between `loc` and `scale`
    arguments.

    The `event_shape` is given by last dimension of the matrix implied by
    `scale`. The last dimension of `loc` (if provided) must broadcast with this

    Additional leading dimensions (if any) will index batches.

    Args:
      loc: Floating-point `Tensor`. If this is set to `None`, `loc` is
        implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where
        `b >= 0` and `k` is the event size.
      scale_diag: Non-zero, floating-point `Tensor` representing a diagonal
        matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`,
        and characterizes `b`-batches of `k x k` diagonal matrices added to
        `scale`. When both `scale_identity_multiplier` and `scale_diag` are
        `None` then `scale` is the `Identity`.
      scale_identity_multiplier: Non-zero, floating-point `Tensor` representing
        a scale-identity-matrix added to `scale`. May have shape
        `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scale
        `k x k` identity matrices added to `scale`. When both
        `scale_identity_multiplier` and `scale_diag` are `None` then `scale`
        is the `Identity`.
      skewness:  Skewness parameter.  floating-point `Tensor` with shape
        broadcastable with `event_shape`.
      tailweight:  Tailweight parameter.  floating-point `Tensor` with shape
        broadcastable with `event_shape`.
      distribution: `tf.Distribution`-like instance. Distribution from which `k`
        iid samples are used as input to transformation `F`.  Default is
        `tfp.distributions.Normal(loc=0., scale=1.)`.
        Must be a scalar-batch, scalar-event distribution.  Typically
        `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is
        a function of non-trainable parameters. WARNING: If you backprop through
        a VectorSinhArcsinhDiag sample and `distribution` is not
        `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then
        the gradient will be incorrect!
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      ValueError: if at most `scale_identity_multiplier` is specified.
    """
        parameters = dict(locals())

        with ops.name_scope(name,
                            values=[
                                loc, scale_diag, scale_identity_multiplier,
                                skewness, tailweight
                            ]) as name:
            loc = ops.convert_to_tensor(loc,
                                        name="loc") if loc is not None else loc
            tailweight = 1. if tailweight is None else tailweight
            has_default_skewness = skewness is None
            skewness = 0. if skewness is None else skewness

            # Recall, with Z a random variable,
            #   Y := loc + C * F(Z),
            #   F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight )
            #   F_0(Z) := Sinh( Arcsinh(Z) * tailweight )
            #   C := 2 * scale / F_0(2)

            # Construct shapes and 'scale' out of the scale_* and loc kwargs.
            # scale_linop is only an intermediary to:
            #  1. get shapes from looking at loc and the two scale args.
            #  2. combine scale_diag with scale_identity_multiplier, which gives us
            #     'scale', which in turn gives us 'C'.
            scale_linop = distribution_util.make_diag_scale(
                loc=loc,
                scale_diag=scale_diag,
                scale_identity_multiplier=scale_identity_multiplier,
                validate_args=False,
                assert_positive=False)
            batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale(
                loc, scale_linop)
            # scale_linop.diag_part() is efficient since it is a diag type linop.
            scale_diag_part = scale_linop.diag_part()
            dtype = scale_diag_part.dtype

            if distribution is None:
                distribution = normal.Normal(loc=array_ops.zeros([],
                                                                 dtype=dtype),
                                             scale=array_ops.ones([],
                                                                  dtype=dtype),
                                             allow_nan_stats=allow_nan_stats)
            else:
                asserts = distribution_util.maybe_check_scalar_distribution(
                    distribution, dtype, validate_args)
                if asserts:
                    scale_diag_part = control_flow_ops.with_dependencies(
                        asserts, scale_diag_part)

            # Make the SAS bijector, 'F'.
            skewness = ops.convert_to_tensor(skewness,
                                             dtype=dtype,
                                             name="skewness")
            tailweight = ops.convert_to_tensor(tailweight,
                                               dtype=dtype,
                                               name="tailweight")
            f = bijectors.SinhArcsinh(skewness=skewness, tailweight=tailweight)
            if has_default_skewness:
                f_noskew = f
            else:
                f_noskew = bijectors.SinhArcsinh(
                    skewness=skewness.dtype.as_numpy_dtype(0.),
                    tailweight=tailweight)

            # Make the Affine bijector, Z --> loc + C * Z.
            c = 2 * scale_diag_part / f_noskew.forward(
                ops.convert_to_tensor(2, dtype=dtype))
            affine = bijectors.Affine(shift=loc,
                                      scale_diag=c,
                                      validate_args=validate_args)

            bijector = bijectors.Chain([affine, f])

            super(VectorSinhArcsinhDiag,
                  self).__init__(distribution=distribution,
                                 bijector=bijector,
                                 batch_shape=batch_shape,
                                 event_shape=event_shape,
                                 validate_args=validate_args,
                                 name=name)
        self._parameters = parameters
        self._loc = loc
        self._scale = scale_linop
        self._tailweight = tailweight
        self._skewness = skewness