コード例 #1
0
 def testInitWithVariableReuse(self):
     with self.cached_session():
         p = pruning.Pruning(spec=self.pruning_hparams,
                             sparsity=self.sparsity)
         p_copy = pruning.Pruning(spec=self.pruning_hparams,
                                  sparsity=self.sparsity)
         variables.global_variables_initializer().run()
         sparsity = p._sparsity.eval()
         self.assertAlmostEqual(sparsity, 0.5)
         self.assertEqual(p._sparsity.eval(), p_copy._sparsity.eval())
コード例 #2
0
 def testInitWithExternalSparsity(self):
     with self.cached_session():
         p = pruning.Pruning(spec=self.pruning_hparams,
                             sparsity=self.sparsity)
         variables.global_variables_initializer().run()
         sparsity = p._sparsity.eval()
         self.assertAlmostEqual(sparsity, 0.5)
コード例 #3
0
    def testPerLayerBlockSparsity(self):
        param_list = [
            "block_dims_map=[layer1/weights:1x1,layer2/weights:1x2]",
            "block_pooling_function=AVG", "threshold_decay=0.0"
        ]

        test_spec = ",".join(param_list)
        pruning_hparams = pruning.get_pruning_hparams().parse(test_spec)

        with variable_scope.variable_scope("layer1"):
            w1 = constant_op.constant([[-0.1, 0.1], [-0.2, 0.2]],
                                      name="weights")
            pruning.apply_mask(w1)

        with variable_scope.variable_scope("layer2"):
            w2 = constant_op.constant(
                [[0.1, 0.1, 0.3, 0.3], [0.2, 0.2, 0.4, 0.4]], name="weights")
            pruning.apply_mask(w2)

        sparsity = variables.VariableV1(0.5, name="sparsity")

        p = pruning.Pruning(pruning_hparams, sparsity=sparsity)
        mask_update_op = p.mask_update_op()
        with self.cached_session() as session:
            variables.global_variables_initializer().run()
            session.run(mask_update_op)
            mask1_eval = session.run(pruning.get_masks()[0])
            mask2_eval = session.run(pruning.get_masks()[1])

            self.assertAllEqual(session.run(pruning.get_weight_sparsity()),
                                [0.5, 0.5])

            self.assertAllEqual(mask1_eval, [[0.0, 0.0], [1., 1.]])
            self.assertAllEqual(mask2_eval, [[0, 0, 1., 1.], [0, 0, 1., 1.]])
コード例 #4
0
 def testInit(self):
     p = pruning.Pruning(self.pruning_hparams)
     self.assertEqual(p._spec.name, "test")
     self.assertAlmostEqual(p._spec.threshold_decay, 0.9)
     self.assertEqual(p._spec.pruning_frequency, 10)
     self.assertEqual(p._spec.sparsity_function_end_step, 100)
     self.assertAlmostEqual(p._spec.target_sparsity, 0.9)
コード例 #5
0
    def testWeightSpecificSparsity(self):
        param_list = [
            "begin_pruning_step=1", "pruning_frequency=1",
            "end_pruning_step=100", "target_sparsity=0.5",
            "weight_sparsity_map=[layer1:0.6,layer2/weights:0.75,.*kernel:0.6]",
            "threshold_decay=0.0"
        ]
        test_spec = ",".join(param_list)
        pruning_hparams = pruning.get_pruning_hparams().parse(test_spec)

        with variable_scope.variable_scope("layer1"):
            w1 = variables.VariableV1(math_ops.linspace(1.0, 100.0, 100),
                                      name="weights")
            _ = pruning.apply_mask(w1)
        with variable_scope.variable_scope("layer2"):
            w2 = variables.VariableV1(math_ops.linspace(1.0, 100.0, 100),
                                      name="weights")
            _ = pruning.apply_mask(w2)
        with variable_scope.variable_scope("layer3"):
            w3 = variables.VariableV1(math_ops.linspace(1.0, 100.0, 100),
                                      name="kernel")
            _ = pruning.apply_mask(w3)

        p = pruning.Pruning(pruning_hparams)
        mask_update_op = p.conditional_mask_update_op()
        increment_global_step = state_ops.assign_add(self.global_step, 1)

        with self.cached_session() as session:
            variables.global_variables_initializer().run()
            for _ in range(110):
                session.run(mask_update_op)
                session.run(increment_global_step)

            self.assertAllClose(session.run(pruning.get_weight_sparsity()),
                                [0.6, 0.75, 0.6])
コード例 #6
0
 def testConditionalMaskUpdate(self):
     param_list = [
         "pruning_frequency=2", "begin_pruning_step=1",
         "end_pruning_step=6", "nbins=100"
     ]
     test_spec = ",".join(param_list)
     pruning_hparams = pruning.get_pruning_hparams().parse(test_spec)
     weights = variables.VariableV1(math_ops.linspace(1.0, 100.0, 100),
                                    name="weights")
     masked_weights = pruning.apply_mask(weights)
     sparsity = variables.VariableV1(0.00, name="sparsity")
     # Set up pruning
     p = pruning.Pruning(pruning_hparams, sparsity=sparsity)
     p._spec.threshold_decay = 0.0
     mask_update_op = p.conditional_mask_update_op()
     sparsity_val = math_ops.linspace(0.0, 0.9, 10)
     increment_global_step = state_ops.assign_add(self.global_step, 1)
     non_zero_count = []
     with self.cached_session() as session:
         variables.global_variables_initializer().run()
         for i in range(10):
             session.run(state_ops.assign(sparsity, sparsity_val[i]))
             session.run(mask_update_op)
             session.run(increment_global_step)
             non_zero_count.append(np.count_nonzero(masked_weights.eval()))
     # Weights pruned at steps 0,2,4,and,6
     expected_non_zero_count = [100, 100, 80, 80, 60, 60, 40, 40, 40, 40]
     self.assertAllEqual(expected_non_zero_count, non_zero_count)
コード例 #7
0
  def _prune_model(self, session):
    pruning_hparams = pruning.get_pruning_hparams().parse(self.pruning_spec)
    p = pruning.Pruning(pruning_hparams, sparsity=self.sparsity)
    self.mask_update_op = p.conditional_mask_update_op()

    variables.global_variables_initializer().run()
    for _ in range(20):
      session.run(self.mask_update_op)
      session.run(self.increment_global_step)
コード例 #8
0
 def testUpdateSingleMask(self):
     with self.cached_session() as session:
         weights = variables.VariableV1(math_ops.linspace(1.0, 100.0, 100),
                                        name="weights")
         masked_weights = pruning.apply_mask(weights)
         sparsity = variables.VariableV1(0.95, name="sparsity")
         p = pruning.Pruning(sparsity=sparsity)
         p._spec.threshold_decay = 0.0
         mask_update_op = p.mask_update_op()
         variables.global_variables_initializer().run()
         masked_weights_val = masked_weights.eval()
         self.assertAllEqual(np.count_nonzero(masked_weights_val), 100)
         session.run(mask_update_op)
         masked_weights_val = masked_weights.eval()
         self.assertAllEqual(np.count_nonzero(masked_weights_val), 5)
コード例 #9
0
    def _blockMasking(self, hparams, weights, expected_mask):

        threshold = variables.VariableV1(0.0, name="threshold")
        sparsity = variables.VariableV1(0.5, name="sparsity")
        test_spec = ",".join(hparams)
        pruning_hparams = pruning.get_pruning_hparams().parse(test_spec)

        # Set up pruning
        p = pruning.Pruning(pruning_hparams, sparsity=sparsity)
        with self.cached_session():
            variables.global_variables_initializer().run()
            _, new_mask = p._maybe_update_block_mask(weights, threshold)
            # Check if the mask is the same size as the weights
            self.assertAllEqual(new_mask.get_shape(), weights.get_shape())
            mask_val = new_mask.eval()
            self.assertAllEqual(mask_val, expected_mask)
コード例 #10
0
 def testPartitionedVariableMasking(self):
     partitioner = partitioned_variables.variable_axis_size_partitioner(40)
     with self.cached_session() as session:
         with variable_scope.variable_scope("", partitioner=partitioner):
             sparsity = variables.VariableV1(0.5, name="Sparsity")
             weights = variable_scope.get_variable(
                 "weights", initializer=math_ops.linspace(1.0, 100.0, 100))
             masked_weights = pruning.apply_mask(
                 weights, scope=variable_scope.get_variable_scope())
         p = pruning.Pruning(sparsity=sparsity)
         p._spec.threshold_decay = 0.0
         mask_update_op = p.mask_update_op()
         variables.global_variables_initializer().run()
         masked_weights_val = masked_weights.eval()
         session.run(mask_update_op)
         masked_weights_val = masked_weights.eval()
         self.assertAllEqual(np.count_nonzero(masked_weights_val), 50)
コード例 #11
0
def train():
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.contrib.framework.get_or_create_global_step()

        # Get images and labels for CIFAR-10.
        images, labels = cifar10.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images)

        # Calculate loss.
        loss = cifar10.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = cifar10.train(loss, global_step)

        # Parse pruning hyperparameters
        pruning_hparams = pruning.get_pruning_hparams().parse(
            FLAGS.pruning_hparams)

        # Create a pruning object using the pruning hyperparameters
        pruning_obj = pruning.Pruning(pruning_hparams, global_step=global_step)

        # Use the pruning_obj to add ops to the training graph to update the masks
        # The conditional_mask_update_op will update the masks only when the
        # training step is in [begin_pruning_step, end_pruning_step] specified in
        # the pruning spec proto
        mask_update_op = pruning_obj.conditional_mask_update_op()

        # Use the pruning_obj to add summaries to the graph to track the sparsity
        # of each of the layers
        pruning_obj.add_pruning_summaries()

        class _LoggerHook(tf.train.SessionRunHook):
            """Logs loss and runtime."""
            def begin(self):
                self._step = -1

            def before_run(self, run_context):
                self._step += 1
                self._start_time = time.time()
                return tf.train.SessionRunArgs(loss)  # Asks for loss value.

            def after_run(self, run_context, run_values):
                duration = time.time() - self._start_time
                loss_value = run_values.results
                if self._step % 10 == 0:
                    num_examples_per_step = 128
                    examples_per_sec = num_examples_per_step / duration
                    sec_per_batch = float(duration)

                    format_str = (
                        '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                        'sec/batch)')
                    print(format_str %
                          (datetime.datetime.now(), self._step, loss_value,
                           examples_per_sec, sec_per_batch))

        with tf.train.MonitoredTrainingSession(
                checkpoint_dir=FLAGS.train_dir,
                hooks=[
                    tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
                    tf.train.NanTensorHook(loss),
                    _LoggerHook()
                ],
                config=tf.ConfigProto(log_device_placement=FLAGS.
                                      log_device_placement)) as mon_sess:
            while not mon_sess.should_stop():
                mon_sess.run(train_op)
                # Update the masks
                mon_sess.run(mask_update_op)