def test_mpi_allgather_variable_size(self): """Test that the allgather correctly gathers 1D, 2D, 3D tensors, even if those tensors have different sizes along the first dim.""" with self.test_session() as session: size = session.run(mpi.size()) rank = session.run(mpi.rank()) dtypes = tf.int32, tf.float32 dims = 1, 2, 3 for dtype, dim in itertools.product(dtypes, dims): # Support tests up to MPI Size of 35 if size > 35: break tensor_sizes = [17, 32, 81, 12, 15, 23, 22] * 5 tensor_sizes = tensor_sizes[:size] tensor = tf.ones([tensor_sizes[rank]] + [17] * (dim - 1), dtype=dtype) * rank gathered = mpi.allgather(tensor) gathered_tensor = session.run(gathered) expected_size = sum(tensor_sizes) self.assertEqual(list(gathered_tensor.shape), [expected_size] + [17] * (dim - 1)) for i in range(size): rank_size = [tensor_sizes[i]] + [17] * (dim - 1) rank_tensor = tf.slice(gathered, [sum(tensor_sizes[:i])] + [0] * (dim - 1), rank_size) self.assertEqual(list(rank_tensor.shape), rank_size) self.assertTrue( session.run(tf.reduce_all(tf.equal(rank_tensor, i))), "mpi.allgather produces incorrect gathered tensor")
def test_mpi_allreduce_cpu(self): """Test on CPU that the allreduce correctly sums 1D, 2D, 3D tensors.""" with self.test_session() as session: size = session.run(mpi.size()) dtypes = [tf.int32, tf.float32] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): tf.set_random_seed(1234) tensor = tf.random_uniform([17] * dim, -100, 100, dtype=dtype) summed = mpi.allreduce(tensor, average=False) multiplied = tensor * size max_difference = tf.reduce_max(tf.abs(summed - multiplied)) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break diff = session.run(max_difference) self.assertTrue(diff <= threshold, "mpi.allreduce produces incorrect results")
def test_mpi_allreduce_error(self): """Test that the allreduce raises an error if different ranks try to send tensors of different rank or dimension.""" with self.test_session() as session: rank = session.run(mpi.rank()) size = session.run(mpi.size()) # This test does not apply if there is only one worker. if size == 1: return # Same rank, different dimension tf.set_random_seed(1234) dims = [17 + rank] * 3 tensor = tf.random_uniform(dims, -1.0, 1.0) with self.assertRaises(tf.errors.FailedPreconditionError): session.run(mpi.allreduce(tensor)) # Same number of elements, different rank tf.set_random_seed(1234) if rank == 0: dims = [17, 23 * 57] else: dims = [17, 23, 57] tensor = tf.random_uniform(dims, -1.0, 1.0) with self.assertRaises(tf.errors.FailedPreconditionError): session.run(mpi.allreduce(tensor))
def test_mpi_allgather_type_error(self): """Test that the allgather returns an error if the types being gathered differ among the processes""" with self.test_session() as session: rank = session.run(mpi.rank()) size = session.run(mpi.size()) # This test does not apply if there is only one worker. if size == 1: return tensor_size = [17] * 3 dtype = tf.int32 if rank % 2 == 0 else tf.float32 tensor = tf.ones(tensor_size, dtype=dtype) * rank with self.assertRaises(tf.errors.FailedPreconditionError): session.run(mpi.allgather(tensor))
def test_mpi_allgather_error(self): """Test that the allgather returns an error if any dimension besides the first is different among the tensors being gathered.""" with self.test_session() as session: rank = session.run(mpi.rank()) size = session.run(mpi.size()) # This test does not apply if there is only one worker. if size == 1: return tensor_size = [17] * 3 tensor_size[1] = 10 * (rank + 1) tensor = tf.ones(tensor_size, dtype=tf.float32) * rank with self.assertRaises(tf.errors.FailedPreconditionError): session.run(mpi.allgather(tensor))
def test_mpi_allreduce_type_error(self): """Test that the allreduce raises an error if different ranks try to send tensors of different type.""" with self.test_session() as session: rank = session.run(mpi.rank()) size = session.run(mpi.size()) # This test does not apply if there is only one worker. if size == 1: return # Same rank, different dimension dims = [17] * 3 tensor = tf.ones(dims, dtype=tf.int32 if rank % 2 == 0 else tf.float32) with self.assertRaises(tf.errors.FailedPreconditionError): session.run(mpi.allreduce(tensor))
def test_mpi_allreduce_gpu(self): """Test that the allreduce works on GPUs. This test will crash badly if used with an MPI implementation that does not support GPU memory transfers directly, as it will call MPI_Send on a GPU data pointer.""" # Only do this test if there are GPUs available. if not tf.test.is_gpu_available(cuda_only=True): return no_gpus = tf.GPUOptions(visible_device_list="") cpu_config = tf.ConfigProto(gpu_options=no_gpus) with self.test_session(config=cpu_config) as session: local_rank = session.run(mpi.local_rank()) one_gpu = tf.GPUOptions(visible_device_list=str(local_rank)) gpu_config = tf.ConfigProto(gpu_options=one_gpu) with self.test_session(config=gpu_config) as session: size = session.run(mpi.size()) dtype = tf.float32 dim = 3 with tf.device("/gpu:0"): tf.set_random_seed(1234) tensor = tf.random_uniform([17] * dim, -100, 100, dtype=dtype) summed = mpi.allreduce(tensor, average=False) multiplied = tensor * size max_difference = tf.reduce_max(tf.abs(summed - multiplied)) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: return diff = session.run(max_difference) self.assertTrue(diff <= threshold, "mpi.allreduce on GPU produces incorrect results")
def test_mpi_allgather(self): """Test that the allgather correctly gathers 1D, 2D, 3D tensors.""" with self.test_session() as session: size = session.run(mpi.size()) rank = session.run(mpi.rank()) dtypes = tf.int32, tf.float32 dims = 1, 2, 3 for dtype, dim in itertools.product(dtypes, dims): tensor = tf.ones([17] * dim, dtype=dtype) * rank gathered = mpi.allgather(tensor) gathered_tensor = session.run(gathered) self.assertEqual(list(gathered_tensor.shape), [17 * size] + [17] * (dim - 1)) for i in range(size): rank_tensor = tf.slice(gathered_tensor, [i * 17] + [0] * (dim - 1), [17] + [-1] * (dim - 1)) self.assertEqual(list(rank_tensor.shape), [17] * dim) self.assertTrue( session.run(tf.reduce_all(tf.equal(rank_tensor, i))), "mpi.allgather produces incorrect gathered tensor")
def test_mpi_size(self): """Test that the size returned by mpi.size() is correct.""" _, true_size = mpi_env_rank_and_size() with self.test_session() as session: size = session.run(mpi.size()) self.assertEqual(true_size, size)