def testSparseRepeatedIndices(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): repeated_index_update_var = variables.Variable([[1.0], [2.0]], dtype=dtype) aggregated_update_var = variables.Variable([[1.0], [2.0]], dtype=dtype) grad_repeated_index = ops.IndexedSlices( constant_op.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), constant_op.constant([1, 1]), constant_op.constant([2, 1])) grad_aggregated = ops.IndexedSlices( constant_op.constant([0.2], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) repeated_update = reg_adagrad_optimizer.RegAdagradOptimizer( 3.0).apply_gradients([(grad_repeated_index, repeated_index_update_var)]) aggregated_update = reg_adagrad_optimizer.RegAdagradOptimizer( 3.0).apply_gradients([(grad_aggregated, aggregated_update_var)]) variables.global_variables_initializer().run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval()) for _ in range(3): repeated_update.run() aggregated_update.run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval())
def doTestBasic(self, use_locking=False, use_resource=False): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): if use_resource: var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) else: var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) ada_opt = reg_adagrad_optimizer.RegAdagradOptimizer( 3.0, initial_accumulator_value=0.1, use_locking=use_locking) ada_update = ada_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 3 steps of adagrad for _ in range(3): ada_update.run() # Validate updated params self.assertAllCloseAccordingToType( np.array([-1.6026098728179932, -0.6026098728179932]), var0.eval()) self.assertAllCloseAccordingToType( np.array([2.715679168701172, 3.715679168701172]), var1.eval())
def testSparseSkipUpdatingSlots(self): iav = 0.130005 # A value that works with float16 for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([[1.0], [2.0]], dtype=dtype) var1 = variables.Variable([[3.0], [4.0]], dtype=dtype) grads0 = ops.IndexedSlices( constant_op.constant([0.1], shape=[1, 1], dtype=dtype), constant_op.constant([0]), constant_op.constant([2, 1])) grads1 = ops.IndexedSlices( constant_op.constant([0.01], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) ada_opt = reg_adagrad_optimizer.RegAdagradOptimizer( 3.0, initial_accumulator_value=iav) with ada_opt.avoid_updating_slots(): ada_update = ada_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) slot0 = ada_opt.get_slot(var0, "accumulator") self.assertEquals(slot0.get_shape(), var0.get_shape()) slot1 = ada_opt.get_slot(var1, "accumulator") self.assertEquals(slot1.get_shape(), var1.get_shape()) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([[1.0], [2.0]], var0.eval()) self.assertAllClose([[3.0], [4.0]], var1.eval()) # Run 3 step of sgd for _ in range(3): ada_update.run() # Validate that ada_opt's slots are not updated. self.assertAllCloseAccordingToType(np.array([[iav], [iav]]), slot0.eval()) self.assertAllCloseAccordingToType(np.array([[iav], [iav]]), slot1.eval())
def testSkipUpdatingSlots(self): iav = 0.130005 # A value that works with float16 for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) ada_opt = reg_adagrad_optimizer.RegAdagradOptimizer( 3.0, initial_accumulator_value=iav) # Apply the optimizer twice. Both applications will use # the same accums. with ada_opt.avoid_updating_slots(): ada_update = ada_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) self.assertEqual(["accumulator"], ada_opt.get_slot_names()) slot0 = ada_opt.get_slot(var0, "accumulator") self.assertEquals(slot0.get_shape(), var0.get_shape()) slot1 = ada_opt.get_slot(var1, "accumulator") self.assertEquals(slot1.get_shape(), var1.get_shape()) variables.global_variables_initializer().run() # Fetch params to validate initial values. self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Mix the first and the second adagrad for 3 steps. for _ in range(3): ada_update.run() # Validate that ada_opt's slots are not updated. self.assertAllCloseAccordingToType(np.array([iav, iav]), slot0.eval()) self.assertAllCloseAccordingToType(np.array([iav, iav]), slot1.eval())
def testSharing(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) ada_opt = reg_adagrad_optimizer.RegAdagradOptimizer(3.0) # Apply the optimizer twice. Both applications will use # the same accums. ada_update1 = ada_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) ada_update2 = ada_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) self.assertEqual(["accumulator"], ada_opt.get_slot_names()) slot0 = ada_opt.get_slot(var0, "accumulator") self.assertEquals(slot0.get_shape(), var0.get_shape()) slot1 = ada_opt.get_slot(var1, "accumulator") self.assertEquals(slot1.get_shape(), var1.get_shape()) variables.global_variables_initializer().run() # Fetch params to validate initial values. self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Mix the first and the second adagrad for 3 steps. ada_update1.run() ada_update2.run() ada_update1.run() # Validate updated params (the same as with only 1 RegAdagrad). self.assertAllCloseAccordingToType( np.array([-1.6026098728179932, -0.6026098728179932]), var0.eval()) self.assertAllCloseAccordingToType( np.array([2.715679168701172, 3.715679168701172]), var1.eval())
def testSparseStability(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): shape = [1, 6] var0 = variables.Variable([[ 0.00872496, -0.106952, 0.110467, 0.226505, -0.0147257, -0.0105945 ]], dtype=dtype) grads0 = ops.IndexedSlices( constant_op.constant([[ -5.91278e-05, 5.31673e-05, -2.5779e-06, 4.29153e-05, -8.4877e-05, -9.48906e-05 ]], shape=shape, dtype=dtype), constant_op.constant([0]), constant_op.constant(shape)) ada_opt = reg_adagrad_optimizer.RegAdagradOptimizer( 1.0, initial_accumulator_value=0.1) ada_update = ada_opt.apply_gradients(zip([grads0], [var0])) self.assertEqual(["accumulator"], ada_opt.get_slot_names()) slot0 = ada_opt.get_slot(var0, "accumulator") init = variables.global_variables_initializer() for _ in range(100): init.run() ada_update.run() self.assertAllCloseAccordingToType( np.array([[0.1, 0.1, 0.1, 0.1, 0.1, 0.1]]), slot0.eval()) self.assertAllCloseAccordingToType( np.array([[ 0.00891194, -0.10712013, 0.11047515, 0.22636929, -0.0144573, -0.01029443 ]]), var0.eval())
def testSparseBasic(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([[1.0], [2.0]], dtype=dtype) var1 = variables.Variable([[3.0], [4.0]], dtype=dtype) grads0 = ops.IndexedSlices( constant_op.constant([0.1], shape=[1, 1], dtype=dtype), constant_op.constant([0]), constant_op.constant([2, 1])) grads1 = ops.IndexedSlices( constant_op.constant([0.01], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) ada_opt = reg_adagrad_optimizer.RegAdagradOptimizer( 3.0, initial_accumulator_value=0.1) ada_update = ada_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([[1.0], [2.0]], var0.eval()) self.assertAllClose([[3.0], [4.0]], var1.eval()) # Run 3 step of sgd for _ in range(3): ada_update.run() # Validate updated params self.assertAllCloseAccordingToType( np.array([[-1.6026098728179932], [2.0]]), var0.eval()) self.assertAllCloseAccordingToType( np.array([[3.0], [3.715679168701172]]), var1.eval())
def testDynamicShapeVariable_Ok(self): with self.cached_session(): v = variable_scope.get_variable( "v", initializer=constant_op.constant(1.), validate_shape=False) self.assertFalse(v.shape.is_fully_defined()) # Creating optimizer should cause no exception. reg_adagrad_optimizer.RegAdagradOptimizer( 3.0, initial_accumulator_value=0.1)
def testSparseRepeatedIndicesResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var_repeated = resource_variable_ops.ResourceVariable( [1.0, 2.0], dtype=dtype) loss_repeated = math_ops.reduce_sum( embedding_ops.embedding_lookup(var_repeated, [0, 0])) var_aggregated = resource_variable_ops.ResourceVariable( [1.0, 2.0], dtype=dtype) loss_aggregated = 2 * math_ops.reduce_sum( embedding_ops.embedding_lookup(var_aggregated, [0])) update_op_repeated = reg_adagrad_optimizer.RegAdagradOptimizer( 2.0).minimize(loss_repeated) update_op_aggregated = reg_adagrad_optimizer.RegAdagradOptimizer( 2.0).minimize(loss_aggregated) variables.global_variables_initializer().run() self.assertAllCloseAccordingToType(var_repeated.eval(), var_aggregated.eval()) for _ in range(3): update_op_repeated.run() update_op_aggregated.run() self.assertAllCloseAccordingToType(var_repeated.eval(), var_aggregated.eval())
def testMinimizeSparseResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = resource_variable_ops.ResourceVariable( [[1.0, 2.0], [3.0, 4.0]], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) pred = math_ops.matmul( embedding_ops.embedding_lookup([var0], [0]), x) loss = pred * pred sgd_op = reg_adagrad_optimizer.RegAdagradOptimizer( 1.0).minimize(loss) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0, 2.0], [3.0, 4.0]], var0.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType([[0, 1], [3, 4]], var0.eval(), atol=0.01)