コード例 #1
0
 def test_convert_collection_to_dict_clear_collection(self):
     t1 = constant_op.constant(1.0, name='t1')
     t2 = constant_op.constant(2.0, name='t2')
     utils.collect_named_outputs('end_points', 'a1', t1)
     utils.collect_named_outputs('end_points', 'a21', t2)
     utils.collect_named_outputs('end_points', 'a22', t2)
     utils.convert_collection_to_dict('end_points', clear_collection=True)
     self.assertEqual(ops.get_collection('end_points'), [])
コード例 #2
0
 def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None):
     """A plain ResNet without extra layers before or after the ResNet blocks."""
     with variable_scope.variable_scope(scope, values=[inputs]):
         with arg_scope([layers.conv2d], outputs_collections='end_points'):
             net = resnet_utils.stack_blocks_dense(inputs, blocks,
                                                   output_stride)
             end_points = utils.convert_collection_to_dict('end_points')
             return net, end_points
コード例 #3
0
 def test_convert_collection_to_dict(self):
     t1 = constant_op.constant(1.0, name='t1')
     t2 = constant_op.constant(2.0, name='t2')
     utils.collect_named_outputs('end_points', 'a1', t1)
     utils.collect_named_outputs('end_points', 'a21', t2)
     utils.collect_named_outputs('end_points', 'a22', t2)
     end_points = utils.convert_collection_to_dict('end_points')
     self.assertEqual(end_points['a1'], t1)
     self.assertEqual(end_points['a21'], t2)
     self.assertEqual(end_points['a22'], t2)
コード例 #4
0
def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              reuse=None,
              scope=None):
    """Generator for v1 ResNet models.

    This function generates a family of ResNet v1 models. See the resnet_v1_*()
    methods for specific model instantiations, obtained by selecting different
    block instantiations that produce ResNets of various depths.

    Training for image classification on Imagenet is usually done with [224, 224]
    inputs, resulting in [7, 7] feature maps at the output of the last ResNet
    block for the ResNets defined in [1] that have nominal stride equal to 32.
    However, for dense prediction tasks we advise that one uses inputs with
    spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
    this case the feature maps at the ResNet output will have spatial shape
    [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
    and corners exactly aligned with the input image corners, which greatly
    facilitates alignment of the features to the image. Using as input [225, 225]
    images results in [8, 8] feature maps at the output of the last ResNet block.

    For dense prediction tasks, the ResNet needs to run in fully-convolutional
    (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
    have nominal stride equal to 32 and a good choice in FCN mode is to use
    output_stride=16 in order to increase the density of the computed features at
    small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

    Args:
      inputs: A tensor of size [batch, height_in, width_in, channels].
      blocks: A list of length equal to the number of ResNet blocks. Each element
        is a resnet_utils.Block object describing the units in the block.
      num_classes: Number of predicted classes for classification tasks. If None
        we return the features before the logit layer.
      is_training: whether batch_norm layers are in training mode.
      global_pool: If True, we perform global average pooling before computing the
        logits. Set to True for image classification, False for dense prediction.
      output_stride: If None, then the output will be computed at the nominal
        network stride. If output_stride is not None, it specifies the requested
        ratio of input to output spatial resolution.
      include_root_block: If True, include the initial convolution followed by
        max-pooling, if False excludes it.
      reuse: whether or not the network and its variables should be reused. To be
        able to reuse 'scope' must be given.
      scope: Optional variable_scope.

    Returns:
      net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
        If global_pool is False, then height_out and width_out are reduced by a
        factor of output_stride compared to the respective height_in and width_in,
        else both height_out and width_out equal one. If num_classes is None, then
        net is the output of the last ResNet block, potentially after global
        average pooling. If num_classes is not None, net contains the pre-softmax
        activations.
      end_points: A dictionary from components of the network to the corresponding
        activation.

    Raises:
      ValueError: If the target output_stride is not valid.
    """
    with variable_scope.variable_scope(scope,
                                       'resnet_v1', [inputs],
                                       reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with arg_scope(
            [layers.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with arg_scope([layers.batch_norm], is_training=is_training):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    net = resnet_utils.conv2d_same(net,
                                                   64,
                                                   7,
                                                   stride=2,
                                                   scope='conv1')
                    net = layers_lib.max_pool2d(net, [3, 3],
                                                stride=2,
                                                scope='pool1')
                net = resnet_utils.stack_blocks_dense(net, blocks,
                                                      output_stride)
                if global_pool:
                    # Global average pooling.
                    net = math_ops.reduce_mean(net, [1, 2],
                                               name='pool5',
                                               keepdims=True)
                if num_classes is not None:
                    net = layers.conv2d(net,
                                        num_classes, [1, 1],
                                        activation_fn=None,
                                        normalizer_fn=None,
                                        scope='logits')
                # Convert end_points_collection into a dictionary of end_points.
                end_points = utils.convert_collection_to_dict(
                    end_points_collection)
                if num_classes is not None:
                    end_points['predictions'] = layers_lib.softmax(
                        net, scope='predictions')
                return net, end_points
コード例 #5
0
def alexnet_v2(inputs,
               num_classes=1000,
               is_training=True,
               dropout_keep_prob=0.5,
               spatial_squeeze=True,
               scope='alexnet_v2'):
    """AlexNet version 2.

    Described in: http://arxiv.org/pdf/1404.5997v2.pdf
    Parameters from:
    github.com/akrizhevsky/cuda-convnet2/blob/master/layers/
    layers-imagenet-1gpu.cfg

    Note: All the fully_connected layers have been transformed to conv2d layers.
          To use in classification mode, resize input to 224x224. To use in fully
          convolutional mode, set spatial_squeeze to false.
          The LRN layers have been removed and change the initializers from
          random_normal_initializer to xavier_initializer.

    Args:
      inputs: a tensor of size [batch_size, height, width, channels].
      num_classes: number of predicted classes.
      is_training: whether or not the model is being trained.
      dropout_keep_prob: the probability that activations are kept in the dropout
        layers during training.
      spatial_squeeze: whether or not should squeeze the spatial dimensions of the
        outputs. Useful to remove unnecessary dimensions for classification.
      scope: Optional scope for the variables.

    Returns:
      the last op containing the log predictions and end_points dict.
    """
    with variable_scope.variable_scope(scope, 'alexnet_v2', [inputs]) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with arg_scope(
            [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d],
                outputs_collections=[end_points_collection]):
            net = layers.conv2d(inputs,
                                64, [11, 11],
                                4,
                                padding='VALID',
                                scope='conv1')
            net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool1')
            net = layers.conv2d(net, 192, [5, 5], scope='conv2')
            net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool2')
            net = layers.conv2d(net, 384, [3, 3], scope='conv3')
            net = layers.conv2d(net, 384, [3, 3], scope='conv4')
            net = layers.conv2d(net, 256, [3, 3], scope='conv5')
            net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool5')

            # Use conv2d instead of fully_connected layers.
            with arg_scope(
                [layers.conv2d],
                    weights_initializer=trunc_normal(0.005),
                    biases_initializer=init_ops.constant_initializer(0.1)):
                net = layers.conv2d(net,
                                    4096, [5, 5],
                                    padding='VALID',
                                    scope='fc6')
                net = layers_lib.dropout(net,
                                         dropout_keep_prob,
                                         is_training=is_training,
                                         scope='dropout6')
                net = layers.conv2d(net, 4096, [1, 1], scope='fc7')
                net = layers_lib.dropout(net,
                                         dropout_keep_prob,
                                         is_training=is_training,
                                         scope='dropout7')
                net = layers.conv2d(
                    net,
                    num_classes, [1, 1],
                    activation_fn=None,
                    normalizer_fn=None,
                    biases_initializer=init_ops.zeros_initializer(),
                    scope='fc8')

            # Convert end_points_collection into a end_point dict.
            end_points = utils.convert_collection_to_dict(
                end_points_collection)
            if spatial_squeeze:
                net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed')
                end_points[sc.name + '/fc8'] = net
            return net, end_points
コード例 #6
0
def vgg_a(inputs,
          num_classes=1000,
          is_training=True,
          dropout_keep_prob=0.5,
          spatial_squeeze=True,
          scope='vgg_a'):
    """Oxford Net VGG 11-Layers version A Example.

    Note: All the fully_connected layers have been transformed to conv2d layers.
          To use in classification mode, resize input to 224x224.

    Args:
      inputs: a tensor of size [batch_size, height, width, channels].
      num_classes: number of predicted classes.
      is_training: whether or not the model is being trained.
      dropout_keep_prob: the probability that activations are kept in the dropout
        layers during training.
      spatial_squeeze: whether or not should squeeze the spatial dimensions of the
        outputs. Useful to remove unnecessary dimensions for classification.
      scope: Optional scope for the variables.

    Returns:
      the last op containing the log predictions and end_points dict.
    """
    with variable_scope.variable_scope(scope, 'vgg_a', [inputs]) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with arg_scope(
            [layers.conv2d, layers_lib.max_pool2d],
                outputs_collections=end_points_collection):
            net = layers_lib.repeat(
                inputs, 1, layers.conv2d, 64, [3, 3], scope='conv1')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool1')
            net = layers_lib.repeat(net, 1, layers.conv2d, 128, [
                                    3, 3], scope='conv2')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool2')
            net = layers_lib.repeat(net, 2, layers.conv2d, 256, [
                                    3, 3], scope='conv3')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool3')
            net = layers_lib.repeat(net, 2, layers.conv2d, 512, [
                                    3, 3], scope='conv4')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool4')
            net = layers_lib.repeat(net, 2, layers.conv2d, 512, [
                                    3, 3], scope='conv5')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool5')
            # Use conv2d instead of fully_connected layers.
            net = layers.conv2d(
                net, 4096, [7, 7], padding='VALID', scope='fc6')
            net = layers_lib.dropout(
                net, dropout_keep_prob, is_training=is_training, scope='dropout6')
            net = layers.conv2d(net, 4096, [1, 1], scope='fc7')
            net = layers_lib.dropout(
                net, dropout_keep_prob, is_training=is_training, scope='dropout7')
            net = layers.conv2d(
                net,
                num_classes, [1, 1],
                activation_fn=None,
                normalizer_fn=None,
                scope='fc8')
            # Convert end_points_collection into a end_point dict.
            end_points = utils.convert_collection_to_dict(
                end_points_collection)
            if spatial_squeeze:
                net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed')
                end_points[sc.name + '/fc8'] = net
            return net, end_points
コード例 #7
0
def overfeat(inputs,
             num_classes=1000,
             is_training=True,
             dropout_keep_prob=0.5,
             spatial_squeeze=True,
             scope='overfeat'):
    """Contains the model definition for the OverFeat network.

    The definition for the network was obtained from:
      OverFeat: Integrated Recognition, Localization and Detection using
      Convolutional Networks
      Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus and
      Yann LeCun, 2014
      http://arxiv.org/abs/1312.6229

    Note: All the fully_connected layers have been transformed to conv2d layers.
          To use in classification mode, resize input to 231x231. To use in fully
          convolutional mode, set spatial_squeeze to false.

    Args:
      inputs: a tensor of size [batch_size, height, width, channels].
      num_classes: number of predicted classes.
      is_training: whether or not the model is being trained.
      dropout_keep_prob: the probability that activations are kept in the dropout
        layers during training.
      spatial_squeeze: whether or not should squeeze the spatial dimensions of the
        outputs. Useful to remove unnecessary dimensions for classification.
      scope: Optional scope for the variables.

    Returns:
      the last op containing the log predictions and end_points dict.

    """
    with variable_scope.variable_scope(scope, 'overfeat', [inputs]) as sc:
        end_points_collection = sc.name + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d
        with arg_scope(
            [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d],
                outputs_collections=end_points_collection):
            net = layers.conv2d(inputs,
                                64, [11, 11],
                                4,
                                padding='VALID',
                                scope='conv1')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool1')
            net = layers.conv2d(net,
                                256, [5, 5],
                                padding='VALID',
                                scope='conv2')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool2')
            net = layers.conv2d(net, 512, [3, 3], scope='conv3')
            net = layers.conv2d(net, 1024, [3, 3], scope='conv4')
            net = layers.conv2d(net, 1024, [3, 3], scope='conv5')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool5')
            with arg_scope(
                [layers.conv2d],
                    weights_initializer=trunc_normal(0.005),
                    biases_initializer=init_ops.constant_initializer(0.1)):
                # Use conv2d instead of fully_connected layers.
                net = layers.conv2d(net,
                                    3072, [6, 6],
                                    padding='VALID',
                                    scope='fc6')
                net = layers_lib.dropout(net,
                                         dropout_keep_prob,
                                         is_training=is_training,
                                         scope='dropout6')
                net = layers.conv2d(net, 4096, [1, 1], scope='fc7')
                net = layers_lib.dropout(net,
                                         dropout_keep_prob,
                                         is_training=is_training,
                                         scope='dropout7')
                net = layers.conv2d(
                    net,
                    num_classes, [1, 1],
                    activation_fn=None,
                    normalizer_fn=None,
                    biases_initializer=init_ops.zeros_initializer(),
                    scope='fc8')
            # Convert end_points_collection into a end_point dict.
            end_points = utils.convert_collection_to_dict(
                end_points_collection)
            if spatial_squeeze:
                net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed')
                end_points[sc.name + '/fc8'] = net
            return net, end_points