def test_image_loading_fitshdu(self, disk_cache): n = 10 d = np.ones((10, 10)) l = [fits.PrimaryHDU(d) for i in range(n)] logs = [] lh = log_to_list(logger, logs, full_record=True) comb = ImCombiner(use_disk_cache=disk_cache) comb._load_images(l) # check if the logging is properly being emitted. log = [ i for i in logs if i.msg == 'The images to combine are not ' 'FrameData. Some features may be disabled.' ] assert_equal(len(log), 1) assert_equal(log[0].levelname, 'WARNING') logger.removeHandler(lh) assert_equal(len(comb._images), n) assert_is_none(comb._buffer) for i, v in enumerate(comb._images): assert_is_instance(v, FrameData) if disk_cache: assert_true(v._memmapping) comb._clear() # must start empty assert_equal(len(comb._images), 0) assert_is_none(comb._buffer)
def test_extract_header_nowcs(self): header = fits.Header.fromstring(_base_header, sep='\n') h, wcs = extract_header_wcs(header) assert_is_none(wcs) assert_is_instance(h, fits.Header) assert_equal(h, header) assert_false(h is header)
def test_image_loading_fitsfile(self, tmpdir, disk_cache): tmp = tmpdir.strpath n = 10 d = np.ones((10, 10)) l = [os.path.join(tmp, f'fits_test{i}') for i in range(n)] for f in l: fits.PrimaryHDU(d).writeto(f) logs = [] lh = log_to_list(logger, logs, full_record=True) comb = ImCombiner(use_disk_cache=disk_cache) comb._load_images(l) # check if the logging is properly being emitted. log = [ i for i in logs if i.msg == 'The images to combine are not ' 'FrameData. Some features may be disabled.' ] assert_equal(len(log), 1) assert_equal(log[0].levelname, 'WARNING') assert_equal(len(comb._images), n) assert_is_none(comb._buffer) for i, v in enumerate(comb._images): assert_is_instance(v, FrameData) if disk_cache: assert_true(v._memmapping) comb._clear() # must start empty assert_equal(len(comb._images), 0) assert_is_none(comb._buffer)
def test_extract_invalid_wcs_header(self): # It should no raise, just return empty wcs # No header change too header = fits.Header.fromstring(_base_header + _invalid_wcs, sep='\n') del header[''] h, wcs = extract_header_wcs(header) assert_is_none(wcs) assert_is_instance(h, fits.Header) assert_equal(h, header) assert_false(h is header)
def test_image_loading_framedata(self, tmpdir, disk_cache): tmp = tmpdir.strpath n = 10 d = np.ones((10, 10)) l = [ FrameData(d, unit='adu', uncertainty=d, cache_folder=tmp, cache_filename=f'test{i}') for i in range(n) ] comb = ImCombiner(use_disk_cache=disk_cache) # must start empty assert_equal(len(comb._images), 0) assert_is_none(comb._buffer) comb._load_images(l) assert_equal(len(comb._images), n) assert_is_none(comb._buffer) for i, v in enumerate(comb._images): fil = os.path.join(tmp, f'test{i}') assert_is_instance(v, FrameData) if disk_cache: assert_true(v._memmapping) # assert_path_exists(fil+'_copy_copy.data') # assert_path_exists(fil+'_copy_copy.unct') # assert_path_exists(fil+'_copy_copy.mask') comb._clear() # must start empty assert_equal(len(comb._images), 0) assert_is_none(comb._buffer) # ensure tmp files cleaned if disk_cache: for i in range(n): fil = os.path.join(tmp, f'test{i}') assert_path_not_exists(fil + '_copy_copy.data') assert_path_not_exists(fil + '_copy_copy.unct') assert_path_not_exists(fil + '_copy_copy.mask')
def test_qfloat_unit_property_none(): # Check None and dimensionless_unscaled c = DummyClass(None) assert_is_none(c._unit) assert_equal(c.unit, units.dimensionless_unscaled)
def test_chunk_yielder_f32(self): # using float32, the number of chunks are almost halved n = 100 d = np.random.random((100, 100)).astype(np.float64) l = [FrameData(d, unit='adu') for i in range(n)] # data size = 4 000 000 = 4 bytes * 100 * 100 * 100 # mask size = 1 000 000 = 1 bytes * 100 * 100 * 100 # total size = 5 000 000 comb = ImCombiner(max_memory=1e6, dtype=np.float32) comb._load_images(l) logs = [] lh = log_to_list(logger, logs, False) level = logger.getEffectiveLevel() logger.setLevel('DEBUG') # for median, tot_size=5*4.5=22.5 # xstep = 4, so n_chuks=25 i = 0 for chunk, unct, slc in comb._chunk_yielder(method='median'): i += 1 for k in chunk: assert_equal(k.shape, (4, 100)) assert_almost_equal(k, d[slc]) assert_is_none(unct) assert_is_instance(k, np.ma.MaskedArray) assert_equal(i, 25) assert_in('Splitting the images into 25 chunks.', logs) logs.clear() # for mean and sum, tot_size=5*3=15 # xstep = 6, so n_chunks=16+1 i = 0 for chunk, unct, slc in comb._chunk_yielder(method='mean'): i += 1 for k in chunk: assert_in(k.shape, [(6, 100), (4, 100)]) assert_almost_equal(k, d[slc]) assert_is_none(unct) assert_is_instance(k, np.ma.MaskedArray) assert_equal(i, 17) assert_in('Splitting the images into 17 chunks.', logs) logs.clear() i = 0 for chunk, unct, slc in comb._chunk_yielder(method='sum'): i += 1 for k in chunk: assert_in(k.shape, [(6, 100), (4, 100)]) assert_almost_equal(k, d[slc]) assert_is_none(unct) assert_is_instance(k, np.ma.MaskedArray) assert_equal(i, 17) assert_in('Splitting the images into 17 chunks.', logs) logs.clear() # this should not split into chunks comb = ImCombiner(max_memory=1e8, dtype=np.float32) comb._load_images(l) i = 0 for chunk, unct, slc in comb._chunk_yielder(method='median'): i += 1 for k in chunk: assert_equal(k.shape, (100, 100)) assert_almost_equal(k, d) assert_is_none(unct) assert_is_instance(k, np.ma.MaskedArray) assert_equal(i, 1) assert_equal(len(logs), 0) logs.clear() # this should split in 300 chunks! # total_size = 4.5*5e6=22.5e6 = 225 chunks # x_step = 1 # y_step = 45 comb = ImCombiner(max_memory=1e5, dtype=np.float32) comb._load_images(l) i = 0 for chunk, unct, slc in comb._chunk_yielder(method='median'): i += 1 for k in chunk: assert_in(k.shape, ((1, 45), (1, 10))) assert_almost_equal(k, d[slc]) assert_is_none(unct) assert_is_instance(k, np.ma.MaskedArray) assert_equal(i, 300) assert_in('Splitting the images into 300 chunks.', logs) logs.clear() logger.setLevel(level) logger.removeHandler(lh)
def test_chunk_yielder_f64(self): n = 100 d = np.random.random((100, 100)).astype(np.float64) l = [FrameData(d, unit='adu') for i in range(n)] # data size = 8 000 000 = 8 bytes * 100 * 100 * 100 # mask size = 1 000 000 = 1 bytes * 100 * 100 * 100 # total size = 9 000 000 comb = ImCombiner(max_memory=1e6, dtype=np.float64) comb._load_images(l) logs = [] lh = log_to_list(logger, logs, False) level = logger.getEffectiveLevel() logger.setLevel('DEBUG') # for median, tot_size=9*4.5=41 # xstep = 2, so n_chuks=50 i = 0 for chunk, unct, slc in comb._chunk_yielder(method='median'): i += 1 for k in chunk: assert_equal(k.shape, (2, 100)) assert_equal(k, d[slc]) assert_is_none(unct) assert_is_instance(k, np.ma.MaskedArray) assert_equal(i, 50) assert_in('Splitting the images into 50 chunks.', logs) logs.clear() # for mean and sum, tot_size=9*3=27 # xstep = 3, so n_chunks=33+1 i = 0 for chunk, unct, slc in comb._chunk_yielder(method='mean'): i += 1 for k in chunk: assert_in(k.shape, [(3, 100), (1, 100)]) assert_equal(k, d[slc]) assert_is_none(unct) assert_is_instance(k, np.ma.MaskedArray) assert_equal(i, 34) assert_in('Splitting the images into 34 chunks.', logs) logs.clear() i = 0 for chunk, unct, slc in comb._chunk_yielder(method='sum'): i += 1 for k in chunk: assert_in(k.shape, [(3, 100), (1, 100)]) assert_equal(k, d[slc]) assert_is_none(unct) assert_is_instance(k, np.ma.MaskedArray) assert_equal(i, 34) assert_in('Splitting the images into 34 chunks.', logs) logs.clear() # this should not split into chunks comb = ImCombiner(max_memory=1e8) comb._load_images(l) i = 0 for chunk, unct, slc in comb._chunk_yielder(method='median'): i += 1 for k in chunk: assert_equal(k.shape, (100, 100)) assert_equal(k, d) assert_is_none(unct) assert_is_instance(k, np.ma.MaskedArray) assert_equal(i, 1) assert_equal(len(logs), 0) logs.clear() # this should split in 400 chunks! comb = ImCombiner(max_memory=1e5) comb._load_images(l) i = 0 for chunk, unct, slc in comb._chunk_yielder(method='median'): i += 1 for k in chunk: assert_equal(k.shape, (1, 25)) assert_equal(k, d[slc]) assert_is_none(unct) assert_is_instance(k, np.ma.MaskedArray) assert_equal(i, 400) assert_in('Splitting the images into 400 chunks.', logs) logs.clear() logger.setLevel(level) logger.removeHandler(lh)
def test_assert_is_none(self): a = None assert_is_none(a) with pytest.raises(AssertionError): assert_is_none(1)
def test_no_uncertainty(self): ccd = self.ccd ccd.uncertainty = None f = _extract_ccddata(ccd) assert_is_none(f['uncertainty'])
def test_no_mask(self): ccd = self.ccd ccd.mask = None f = _extract_ccddata(ccd) assert_is_none(f['mask'])