コード例 #1
0
def scale_einstein_radius(z_lens, z_src, H0=70, Om0=0.3, Ode0=0.7):
    cosmo = LambdaCDM(H0=H0, Om0=Om0, Ode0=Ode0)
    d_ls = cosmo.angular_diameter_distance_z1z2(z_lens, z_src)
    d_s = cosmo.angular_diameter_distance_z1z2(0, z_src)

    d = d_ls / d_s

    return d.value
コード例 #2
0
def partial_profile(RA0, DEC0, Z, RIN, ROUT, ndots, h):

    ndots = int(ndots)

    cosmo = LambdaCDM(H0=100 * h, Om0=0.25, Ode0=0.75)
    dl = cosmo.angular_diameter_distance(Z).value
    KPCSCALE = dl * (((1.0 / 3600.0) * np.pi) / 180.0) * 1000.0

    delta = ROUT / (3600 * KPCSCALE)

    t0 = time.time()
    mask = (S.ra < (RA0 + delta)) & (S.ra > (RA0 - delta)) & (
        S.dec > (DEC0 - delta)) & (S.dec < (DEC0 + delta)) & (S.z_v >
                                                              (Z + 0.1))

    catdata = S[mask]

    ds = cosmo.angular_diameter_distance(catdata.z_v).value
    dls = cosmo.angular_diameter_distance_z1z2(Z, catdata.z_v).value

    BETA_array = dls / ds

    Dl = dl * 1.e6 * pc
    sigma_c = (((cvel**2.0) / (4.0 * np.pi * G * Dl)) *
               (1. / BETA_array)) * (pc**2 / Msun)

    rads, theta, test1, test2 = eq2p2(np.deg2rad(catdata.ra),
                                      np.deg2rad(catdata.dec), np.deg2rad(RA0),
                                      np.deg2rad(DEC0))

    r = np.rad2deg(rads) * 3600 * KPCSCALE

    e1 = catdata.gamma1
    e2 = -1. * catdata.gamma2

    #get tangential ellipticities
    et = (-e1 * np.cos(2 * theta) - e2 * np.sin(2 * theta)) * sigma_c

    k = catdata.kappa * sigma_c

    r = np.rad2deg(rads) * 3600 * KPCSCALE

    bines = np.logspace(np.log10(RIN), np.log10(ROUT), num=ndots + 1)
    dig = np.digitize(r, bines)

    SIGMA = []
    DSIGMA = []

    for nbin in range(ndots):
        mbin = dig == nbin + 1

        SIGMA = np.append(SIGMA, np.average(k[mbin]))
        DSIGMA = np.append(DSIGMA, np.average(k[mbin]))

    return [SIGMA, DSIGMA]
コード例 #3
0
class AstroPyCosmology(CLMMCosmology):
    def __init__(self, **kwargs):
        super(AstroPyCosmology, self).__init__(**kwargs)

        # this tag will be used to check if the cosmology object is accepted by the modeling
        self.backend = 'ct'

        assert isinstance(self.be_cosmo, LambdaCDM)

    def _init_from_cosmo(self, be_cosmo):

        assert isinstance(be_cosmo, LambdaCDM)
        self.be_cosmo = be_cosmo

    def _init_from_params(self, H0, Omega_b0, Omega_dm0, Omega_k0):

        Om0 = Omega_b0 + Omega_dm0
        Ob0 = Omega_b0

        self.be_cosmo = FlatLambdaCDM(H0=H0,
                                      Om0=Om0,
                                      Ob0=Ob0,
                                      Tcmb0=2.7255,
                                      Neff=3.046,
                                      m_nu=([0.06, 0.0, 0.0] * units.eV))
        if Omega_k0 != 0.0:
            Ode0 = self.be_cosmo.Ode0 - Omega_k0
            self.be_cosmo = LambdaCDM(H0=H0,
                                      Om0=Om0,
                                      Ob0=Ob0,
                                      Ode0=Ode0,
                                      Tcmb0=2.7255,
                                      Neff=3.046,
                                      m_nu=([0.06, 0.0, 0.0] * units.eV))

    def _set_param(self, key, value):
        raise NotImplementedError("Astropy do not support changing parameters")

    def _get_param(self, key):
        if key == "Omega_m0":
            return self.be_cosmo.Om0
        elif key == "Omega_b0":
            return self.be_cosmo.Ob0
        elif key == "Omega_dm0":
            return self.be_cosmo.Odm0
        elif key == "Omega_k0":
            return self.be_cosmo.Ok0
        elif key == 'h':
            return self.be_cosmo.H0.to_value() / 100.0
        elif key == 'H0':
            return self.be_cosmo.H0.to_value()
        else:
            raise ValueError(f"Unsupported parameter {key}")

    def get_Omega_m(self, z):
        return self.be_cosmo.Om(z)

    def get_E2Omega_m(self, z):
        return self.be_cosmo.Om(z) * (self.be_cosmo.H(z) / self.be_cosmo.H0)**2

    def eval_da_z1z2(self, z1, z2):
        return self.be_cosmo.angular_diameter_distance_z1z2(z1, z2).to_value(
            units.Mpc)

    def eval_sigma_crit(self, z_len, z_src):
        if np.any(np.array(z_src) <= z_len):
            warnings.warn(
                f'Some source redshifts are lower than the cluster redshift. Returning Sigma_crit = np.inf for those galaxies.'
            )
        # Constants
        clight_pc_s = const.CLIGHT_KMS.value * 1000. / const.PC_TO_METER.value
        gnewt_pc3_msun_s2 = const.GNEWT.value * const.SOLAR_MASS.value / const.PC_TO_METER.value**3

        d_l = self.eval_da_z1z2(0, z_len)
        d_s = self.eval_da_z1z2(0, z_src)
        d_ls = self.eval_da_z1z2(z_len, z_src)

        beta_s = np.maximum(0., d_ls / d_s)
        return clight_pc_s**2 / (4.0 * np.pi *
                                 gnewt_pc3_msun_s2) * 1 / d_l * np.divide(
                                     1., beta_s) * 1.0e6
コード例 #4
0
class TestCosmoInterp(object):
    """

    """
    def setup(self):
        self.H0_true = 70
        self.omega_m_true = 0.3
        self._ok_true = 0.1
        self.cosmo = FlatLambdaCDM(H0=self.H0_true,
                                   Om0=self.omega_m_true,
                                   Ob0=0.05)
        self.cosmo_interp = CosmoInterp(cosmo=self.cosmo,
                                        z_stop=3,
                                        num_interp=100)
        self.cosmo_ok = LambdaCDM(H0=self.H0_true,
                                  Om0=self.omega_m_true,
                                  Ode0=1.0 - self.omega_m_true - self._ok_true)
        self.cosmo_interp_ok = CosmoInterp(cosmo=self.cosmo_ok,
                                           z_stop=3,
                                           num_interp=100)

        self.cosmo_ok_neg = LambdaCDM(H0=self.H0_true,
                                      Om0=self.omega_m_true,
                                      Ode0=1.0 - self.omega_m_true +
                                      self._ok_true)
        self.cosmo_interp_ok_neg = CosmoInterp(cosmo=self.cosmo_ok_neg,
                                               z_stop=3,
                                               num_interp=100)

    def test_angular_diameter_distance(self):
        z = 1.
        da = self.cosmo.angular_diameter_distance(z=[z])
        da_interp = self.cosmo_interp.angular_diameter_distance(z=[z])
        npt.assert_almost_equal(da_interp / da, 1, decimal=3)
        assert da.unit == da_interp.unit

        da = self.cosmo_ok.angular_diameter_distance(z=z)
        da_interp = self.cosmo_interp_ok.angular_diameter_distance(z=z)
        npt.assert_almost_equal(da_interp / da, 1, decimal=3)
        assert da.unit == da_interp.unit

        da = self.cosmo_ok_neg.angular_diameter_distance(z=z)
        da_interp = self.cosmo_interp_ok_neg.angular_diameter_distance(z=z)
        npt.assert_almost_equal(da_interp / da, 1, decimal=3)
        assert da.unit == da_interp.unit

    def test_angular_diameter_distance_array(self):
        # test for array input
        z1 = 1.
        z2 = 2.
        da_z1 = self.cosmo.angular_diameter_distance(z=[z1])
        da_z2 = self.cosmo.angular_diameter_distance(z=[z2])
        da_interp = self.cosmo_interp.angular_diameter_distance(z=[z1, z2])
        npt.assert_almost_equal(da_interp[0] / da_z1, 1, decimal=3)
        npt.assert_almost_equal(da_interp[1] / da_z2, 1, decimal=3)
        assert da_z1.unit == da_interp.unit
        assert len(da_interp) == 2

        da_z12 = self.cosmo.angular_diameter_distance(z=[z1, z2])
        npt.assert_almost_equal(da_z12[0] / da_z1, 1, decimal=3)
        npt.assert_almost_equal(da_z12[1] / da_z2, 1, decimal=3)

    def test_angular_diameter_distance_z1z2(self):
        z1 = .3
        z2 = 2.
        delta_a = self.cosmo.angular_diameter_distance_z1z2(z1=z1, z2=z2)
        delta_a_interp = self.cosmo_interp.angular_diameter_distance_z1z2(
            z1=z1, z2=z2)
        npt.assert_almost_equal(delta_a_interp / delta_a, 1, decimal=3)
        assert delta_a.unit == delta_a_interp.unit

        delta_a = self.cosmo_ok.angular_diameter_distance_z1z2(z1=z1, z2=z2)
        delta_a_interp = self.cosmo_interp_ok.angular_diameter_distance_z1z2(
            z1=z1, z2=z2)
        npt.assert_almost_equal(delta_a_interp / delta_a, 1, decimal=3)
        assert delta_a.unit == delta_a_interp.unit
コード例 #5
0
    Zs = np.repeat(zb[mask1], sum_mask)
    #DS = cd.angular_diameter_distance(Zs, z0=0, **cosmo)
    DS = np.array(cosmo.angular_diameter_distance(Zs))

    print '#---------- parameters of group cat'

    #gcat = grupos[ind_g]
    gcat = grupos[1].data[ind_g]
    DL = dl[ind_g]
    Zl = zl[ind_g]

    del (ind_g)

    print '#-------------- computing distances'

    DLS = np.array(cosmo.angular_diameter_distance_z1z2(Zl, Zs))
    #DLS=np.zeros(sum_mask.sum())

    del (sum_mask)

    print '-----------------------------------------------------------------'
    print '                 MAKING THE CATALOGUE FOR GALAXIES               '
    print '================================================================='

    tbhdu = fits.BinTableHDU.from_columns([
        fits.Column(name='SE_ID', format='E', array=lcat[:, 0]),
        fits.Column(name='IM_NUM', format='D', array=lcat[:, 1]),
        fits.Column(name='RAJ2000', format='D', array=lcat[:, 2]),
        fits.Column(name='DECJ2000', format='D', array=lcat[:, 3]),
        fits.Column(name='X_IMAGE', format='E', array=lcat[:, 4]),
        fits.Column(name='Y_IMAGE', format='E', array=lcat[:, 5]),
コード例 #6
0
def partial_map(RA0, DEC0, Z, angles, ROUT, ndots, h):

    lsize = int(np.sqrt(ndots))

    cosmo = LambdaCDM(H0=100 * h, Om0=0.25, Ode0=0.75)
    dl = cosmo.angular_diameter_distance(Z).value
    KPCSCALE = dl * (((1.0 / 3600.0) * np.pi) / 180.0) * 1000.0

    delta = (ROUT * 1.5) / (3600 * KPCSCALE)
    rarray = [[-1. * (ROUT * 1.e-3), (ROUT * 1.e-3)],
              [-1. * (ROUT * 1.e-3), (ROUT * 1.e-3)]]

    t0 = time.time()
    mask = (S.ra < (RA0 + delta)) & (S.ra > (RA0 - delta)) & (
        S.dec > (DEC0 - delta)) & (S.dec < (DEC0 + delta)) & (S.z_v >
                                                              (Z + 0.1))

    catdata = S[mask]

    ds = cosmo.angular_diameter_distance(catdata.z_v).value
    dls = cosmo.angular_diameter_distance_z1z2(Z, catdata.z_v).value

    BETA_array = dls / ds

    Dl = dl * 1.e6 * pc
    sigma_c = (((cvel**2.0) / (4.0 * np.pi * G * Dl)) *
               (1. / BETA_array)) * (pc**2 / Msun)

    rads, theta, test1, test2 = eq2p2(np.deg2rad(catdata.ra),
                                      np.deg2rad(catdata.dec), np.deg2rad(RA0),
                                      np.deg2rad(DEC0))

    theta2 = (2. * np.pi - theta) + np.pi / 2.
    theta_ra = theta2
    theta_ra[theta2 > 2. * np.pi] = theta2[theta2 > 2. * np.pi] - 2. * np.pi

    e1 = catdata.gamma1
    e2 = -1. * catdata.gamma2

    #get tangential ellipticities
    et = (-e1 * np.cos(2 * theta) - e2 * np.sin(2 * theta)) * sigma_c
    #get cross ellipticities
    ex = (-e1 * np.sin(2 * theta) + e2 * np.cos(2 * theta)) * sigma_c
    # '''
    k = catdata.kappa * sigma_c

    wcs.wcs.crval = [RA0, DEC0]
    dx, dy = wcs.wcs_world2pix(catdata.ra, catdata.dec, 0)

    dx = dx * KPCSCALE * 1.e-3
    dy = dy * KPCSCALE * 1.e-3

    # del(e1)
    # del(e2)

    r = np.rad2deg(rads) * 3600 * KPCSCALE
    del (rads)

    Ntot = len(catdata)
    # del(catdata)

    t = np.tile(theta_ra, (3, 1)).T
    an = np.tile(angles, (len(theta_ra), 1))
    at = t - an

    GTsum = np.zeros((ndots, 3))
    GXsum = np.zeros((ndots, 3))
    Ksum = np.zeros((ndots, 3))
    Ninbin = np.zeros((ndots, 3))

    for j in range(3):
        x_t = (dx * np.cos(an[:, j]) + dy * np.sin(an[:, j]))
        y_t = (-1. * dx * np.sin(an[:, j]) + dy * np.cos(an[:, j]))
        m = (abs(x_t) < (ROUT * 1.e-3)) * (abs(y_t) < (ROUT * 1.e-3))
        out = stats.binned_statistic_2d(x_t[m],
                                        y_t[m],
                                        et[m],
                                        'count',
                                        bins=lsize,
                                        range=rarray)
        Ninbin[:, j] = out.statistic.flatten()
        out = stats.binned_statistic_2d(x_t[m],
                                        y_t[m],
                                        et[m],
                                        'sum',
                                        bins=lsize,
                                        range=rarray)
        GTsum[:, j] = out.statistic.flatten()
        out = stats.binned_statistic_2d(x_t[m],
                                        y_t[m],
                                        ex[m],
                                        'sum',
                                        bins=lsize,
                                        range=rarray)
        GXsum[:, j] = out.statistic.flatten()
        out = stats.binned_statistic_2d(x_t[m],
                                        y_t[m],
                                        k[m],
                                        'sum',
                                        bins=lsize,
                                        range=rarray)
        Ksum[:, j] = out.statistic.flatten()

    Ntot = m.sum()

    output = {
        'GTsum': GTsum,
        'GXsum': GXsum,
        'Ksum': Ksum,
        'Ninbin': Ninbin,
        'Ntot': Ntot
    }

    return output
コード例 #7
0
def partial_profile(RA0,DEC0,Z,angles,
                    RIN,ROUT,ndots,h,roff,phi_off):

        ndots = int(ndots)

        cosmo = LambdaCDM(H0=100*h, Om0=0.25, Ode0=0.75)
        dl  = cosmo.angular_diameter_distance(Z).value
        KPCSCALE   = dl*(((1.0/3600.0)*np.pi)/180.0)*1000.0
        
        delta = ROUT/(3600*KPCSCALE)
        
        t0 = time.time()
        mask = (S.ra < (RA0+delta))&(S.ra > (RA0-delta))&(S.dec > (DEC0-delta))&(S.dec < (DEC0+delta))&(S.z_v > (Z+0.1))
        t1 = time.time()  
        # print(t1-t0)             
        catdata = S[mask]

        ds  = cosmo.angular_diameter_distance(catdata.z_v).value
        dls = cosmo.angular_diameter_distance_z1z2(Z, catdata.z_v).value
                
        
        BETA_array = dls/ds
        
        Dl = dl*1.e6*pc
        sigma_c = (((cvel**2.0)/(4.0*np.pi*G*Dl))*(1./BETA_array))*(pc**2/Msun)

        t2 = time.time()
        # print(RA0,DEC0,t2-t1)

        rads, theta, test1,test2 = eq2p2(np.deg2rad(catdata.ra),
                                        np.deg2rad(catdata.dec),
                                        np.deg2rad(RA0),
                                        np.deg2rad(DEC0))
        
        theta2 = (2.*np.pi - theta) +np.pi/2.
        theta_ra = theta2
        theta_ra[theta2 > 2.*np.pi] = theta2[theta2 > 2.*np.pi] - 2.*np.pi
                       
        e1     = catdata.gamma1
        e2     = -1.*catdata.gamma2
        
       
        #get tangential ellipticities 
        et = (-e1*np.cos(2*theta)-e2*np.sin(2*theta))*sigma_c
        #get cross ellipticities
        ex = (-e1*np.sin(2*theta)+e2*np.cos(2*theta))*sigma_c
        # '''
        k  = catdata.kappa*sigma_c
          
        del(e1)
        del(e2)
        
        r = np.rad2deg(rads)*3600*KPCSCALE
        r = np.sqrt(roff**2 + r**2 + 2.*roff*r*np.cos(phi_off))
        del(rads)
        
        
        Ntot = len(catdata)
        del(catdata)    
        
        bines = np.round(np.logspace(np.log10(RIN),np.log10(ROUT),num=ndots+1),0)
        dig = np.digitize(r,bines)
        
        t = np.tile(theta_ra,(3,1)).T
        an = np.tile(angles,(len(theta_ra),1))
        at     = t - an
        
        
        SIGMAwsum    = []
        DSIGMAwsum_T = []
        DSIGMAwsum_X = []
        N_inbin = []
              
        GAMMATcos_wsum = np.zeros((ndots,3))
        GAMMAXsin_wsum = np.zeros((ndots,3))
                
        COS2_2theta = np.zeros((ndots,3))
        SIN2_2theta = np.zeros((ndots,3))
                       
        for nbin in range(ndots):
                mbin = dig == nbin+1              
                
                SIGMAwsum    = np.append(SIGMAwsum,k[mbin].sum())
                DSIGMAwsum_T = np.append(DSIGMAwsum_T,et[mbin].sum())
                DSIGMAwsum_X = np.append(DSIGMAwsum_X,ex[mbin].sum())

                GAMMATcos_wsum[nbin,:] = np.sum((np.tile(et[mbin],(3,1))*np.cos(2.*at[mbin]).T),axis=1)
                GAMMAXsin_wsum[nbin,:] = np.sum((np.tile(ex[mbin],(3,1))*np.sin(2.*at[mbin]).T),axis=1)
                
                COS2_2theta[nbin,:] = np.sum((np.cos(2.*at[mbin]).T)**2,axis=1)
                SIN2_2theta[nbin,:] = np.sum((np.sin(2.*at[mbin]).T)**2,axis=1)
                               
                N_inbin = np.append(N_inbin,len(et[mbin]))
                
                index = np.arange(mbin.sum())
        
        output = {'SIGMAwsum':SIGMAwsum,'DSIGMAwsum_T':DSIGMAwsum_T,
                   'DSIGMAwsum_X':DSIGMAwsum_X,
                   'GAMMATcos_wsum': GAMMATcos_wsum, 'GAMMAXsin_wsum': GAMMAXsin_wsum,
                   'COS2_2theta_wsum':COS2_2theta,'SIN2_2theta_wsum':SIN2_2theta,
                   'N_inbin':N_inbin,'Ntot':Ntot}
        
        return output