コード例 #1
0
ファイル: smap_beam.py プロジェクト: zemcov/smap
def get_gauss_beam(fwhm, pixscale, nfwhm=5.0, oversamp=5):
    """ Generate Gaussian kernel

    Parameters
    ----------
    fwhm: float
      FWHM of the Gaussian beam.

    pixscale: float
      Pixel scale, in same units as FWHM.

    nfwhm: float
      Number of fwhm (approximately) of each dimension of the output beam.

    oversamp: int
      Odd integer giving the oversampling to use when constructing the
      beam.  The beam is generated in pixscale / oversamp size pixels,
      then rebinned to pixscale.
    
    Notes
    -----
      The beam is normalized by having a value of 1 in the center.
      If oversampling is used, the returned array will be the sum over
      the neighborhood of this maximum, so will not be one.
    """

    if fwhm <= 0:
        raise ValueError("Invalid (negative) FWHM")
    if pixscale <= 0:
        raise ValueError("Invalid (negative) pixel scale")
    if nfwhm <= 0.0:
        raise ValueError("Invalid (non-positive) nfwhm")
    if fwhm / pixscale < 2.5:
        raise ValueError("Insufficiently well sampled beam")
    if oversamp < 1:
        raise ValueError("Invalid (<1) oversampling")

    retext = round(fwhm * nfwhm / pixscale)
    if retext % 2 == 0:
        retext += 1

    bmsigma = fwhm / math.sqrt(8 * math.log(2))

    if oversamp == 1:
        # Easy case
        beam = make_kernel((retext, retext), bmsigma / pixscale, 
                           'gaussian').astype(np.float32)
        beam /= beam.max
    else:
        genext = retext * oversamp
        genpixscale = pixscale / oversamp
        gbeam = make_kernel((genext, genext), bmsigma / genpixscale, 
                           'gaussian').astype(np.float32)
        gbeam /= gbeam.max() # Normalize -before- rebinning

        # Rebinning -- tricky stuff!
        bmview = gbeam.reshape(retext, oversamp, retext, oversamp)
        beam = bmview.mean(axis=3).mean(axis=1)

    return beam
コード例 #2
0
def plot_2005ip():
    '''
	Create a plot of the combined NUV and FUV spectrum of SN 2005ip, label the common SN
	lines with different colors for different species and save
	'''
    redshift = 0.0072
    tbdata = fits.getdata('2005ip_all_x1dsum.fits', 1)
    sdqflags = fits.getval('2005ip_all_x1dsum.fits', 'sdqflags', 1)
    good_indx = np.where(tbdata['dq'][0] & sdqflags == 0)

    fig = pyplot.figure(figsize=[20, 10])
    ax = fig.add_subplot(1, 1, 1)
    deredshift_wl = deredshift_wavelength(tbdata['wavelength'][0][good_indx],
                                          redshift)
    smoothed_signal = convolve.convolve(
        tbdata['flux'][0][good_indx],
        make_kernel.make_kernel([15], 15, 'boxcar'))

    ax.plot(deredshift_wl, smoothed_signal, 'b')
    ax = label_spectra(ax)
    ax.set_xlabel('Rest Wavelength ($\AA$)')
    ax.set_ylabel('Flux (ergs/cm^2/s/$\AA$)')
    ax.set_title(
        'Preliminary HST/STIS Spectrum of SN 2005ip (smoothed by 15 pix)')
    ax.set_ylim(-0.1E-15, 0.25E-15)
    add_date_to_plot(ax)
    pyplot.savefig('2005ip_combined_labeled.pdf')
コード例 #3
0
def plot_2009ip():
	'''
	Create a plot of the combined NUV and FUV spectrum of SN 2009ip, label the common SN
	lines with different colors for different species and save
	'''
	redshift = 0.0072
	tbdata = fits.getdata('2009ip_all_x1dsum.fits', 1)
	sdqflags = fits.getval('2009ip_all_x1dsum.fits', 'sdqflags', 1)
	good_indx = np.where(tbdata['dq'][0]&sdqflags == 0)

	fig = pyplot.figure(figsize = [20, 10])
	ax = fig.add_subplot(1,1,1)
	deredshift_wl = deredshift_wavelength(tbdata['wavelength'][0][good_indx], redshift)
	smoothed_signal = convolve.convolve(tbdata['flux'][0][good_indx], make_kernel.make_kernel([15],15,'boxcar'))

	ax.plot(deredshift_wl, smoothed_signal, 'b')
	ax = label_spectra(ax)
	ax.set_xlabel('Rest Wavelength ($\AA$)')
	ax.set_ylabel('Flux (ergs/cm^2/s/$\AA$)')
	ax.set_title('Preliminary HST/STIS Spectrum of SN 2009ip (smoothed by 15 pix)')
	ax.set_ylim(-0.1E-15, 0.25E-15)
	add_date_to_plot(ax)
	pyplot.savefig('2009ip_combined_labeled.pdf')
コード例 #4
0
ファイル: plots.py プロジェクト: low-sky/MUSIC_usualsuspects
        m1 = data[x].mapstruct.map[0]
        m2 = data[y].mapstruct.map[0]
        yy1, xx1 = grid1 = np.indices(m1.shape)
        ratio = m2.shape[0] / float(m1.shape[0])
        newm2 = scipy.ndimage.map_coordinates(np.nan_to_num(m2), grid1 * ratio)
        mask = (m1 == m1) * (newm2 == newm2) * (m1 > 0) * (newm2 > 0)
        #mask *= (m1>m1[mask].std()) * (newm2>newm2[mask].std())
        rr = ((xx1 - m1.shape[1] / 3.)**2 + (yy1 - m1.shape[0] / 3.)**2)**0.5
        #mask *= rr < 5

        beamsize_delta = (np.abs(data[y].mapstruct['OMEGA_BEAM_AM'] -
                                 data[x].mapstruct['OMEGA_BEAM_AM']) / np.pi /
                          2)**0.5
        am_per_pix = data[y].mapstruct['OMEGA_PIX_AM']**0.5
        kernelwidth = beamsize_delta / am_per_pix
        kernel = make_kernel.make_kernel(
            m1.shape, kernelwidth=kernelwidth)  #, normalize_kernel=np.max)
        newm1 = convolve.convolve_fft(m1, kernel, interpolate_nan=True)
        newm1 *= data[y].mapstruct['OMEGA_BEAM_AM'] / data[x].mapstruct[
            'OMEGA_BEAM_AM']

        plot(newm1[mask], newm2[mask], 'o', alpha=0.5)

        #kernel = make_kernel.make_kernel(m1.shape, kernelwidth=5)
        #smm1 = convolve.convolve_fft(newm1,kernel, interpolate_nan=True)
        #smm2 = convolve.convolve_fft(newm2,kernel, interpolate_nan=True)
        #plot((newm1-smm1)[mask],(newm2-smm2)[mask],'rs', alpha=0.5)

        xx = np.linspace(newm1[mask].min(), newm1[mask].max())
        plot(xx, xx * (band_waves[x] / band_waves[y])**3.5, 'r--')
        plot(xx, xx * (band_waves[x] / band_waves[y])**2, 'b:')
        subplots_adjust(hspace=0.3, wspace=0.3)
コード例 #5
0
def convolve_and_match(data, objectname, clobber=True, writefits=True, unsharpscale=80):
    """
    Convolve all bands to Band 0 resolution and resample all to Band 3
    pixelization.  The data values are appropriately scaled after smoothing
    such that they are in units of mJy/beam, where the beam is the Band 0 beam.
    Sanity checks on this front are warranted.

    Parameters
    ----------
    data : dict of IDLSAVE structs
    objectname : str
        Object name for saving purposes
    clobber : bool
        Overwrite FITS files if they exist?
    writefits : bool
        Write the fits files to disk?
    unsharpscale : float
        Unsharp mask angular scale in arcseconds

    Returns
    -------
    smoothdict : dict
        A dictionary of band number : smoothed & resampled map
    unsharpdict : dict
        A dictionary of band number : unsharp-masked map
    """
    smoothed = {}
    unsharped = {}

    # the band 3 map is used as the reference pixel scale
    band3 = data[3].mapstruct.map[0]
    yy1,xx1 = grid1 = np.indices(band3.shape)

    pixscale = float(data[3].mapstruct['OMEGA_PIX_AM']**0.5 / 60.)
    pixscale_as = pixscale*3600

    if writefits:

        header = fits.Header()
        header['CDELT1'] = pixscale
        header['CDELT2'] = pixscale
        ffile = fits.PrimaryHDU(data=band3, header=header)

    for ii in xrange(4):
        # grab the map from band i
        m = data[ii].mapstruct.map[0]
        # ratio of map sizes (assumes they're symmetric, sort of)
        ratio = m.shape[0]/float(band3.shape[0])

        # rescale the band i map to band3 scale
        newm = scipy.ndimage.map_coordinates(np.nan_to_num(m), grid1*ratio)
        # flag out the NANs again (we had to make them zeros for the previous step to work)
        bads = scipy.ndimage.map_coordinates(np.array(m!=m,dtype='float'), grid1*ratio)
        newm[bads>0.5] = np.nan

        # Determine the appropriate convolution kernel size
        # beamsize = np.array([60*(v.mapstruct.omega_beam_am/np.pi/2.)**0.5 * (8*np.log(2))**0.5 for v in data.values()]).ravel()
        # array([ 45.00000061,  31.00000042,  25.00000034,  23.00000031])
        # these check out...
        beamsize_delta = (np.abs(data[ii].mapstruct['OMEGA_BEAM_AM']-data[0].mapstruct['OMEGA_BEAM_AM'])/np.pi/2)**0.5

        # pixel scale in the *output* image
        am_per_pix = data[3].mapstruct['OMEGA_PIX_AM']**0.5
        # kernel width in pixels
        kernelwidth = beamsize_delta/am_per_pix

        if kernelwidth > 0:
            kernel = make_kernel.make_kernel(band3.shape, kernelwidth=kernelwidth)
            newm = convolve.convolve_fft(newm, kernel, interpolate_nan=True)

        # rescale the values to be mJy per a much larger beam; the values should therefore be larger
        newm *= data[0].mapstruct['OMEGA_BEAM_AM']/data[ii].mapstruct['OMEGA_BEAM_AM']

        # Now do an unsharp mask with a fairly large kernel to ensure the spatial filters are identical
        kernel = make_kernel.make_kernel(band3.shape, kernelwidth=unsharpscale/pixscale_as)
        smm = convolve.convolve_fft(newm,kernel, interpolate_nan=True)

        smoothed[ii] = newm
        unsharped[ii] = newm-smm

        if writefits:
            ffile.data = newm

            ffile.writeto("%s_Band%i_smooth.fits" % (objectname,ii), clobber=clobber)

            ffile.data = newm - smm

            ffile.writeto("%s_Band%i_smooth_unsharp.fits" % (objectname,ii), clobber=clobber)

    return smoothed,unsharped
コード例 #6
0
ファイル: plots.py プロジェクト: BGPS/MUSIC_usualsuspects
        m1 = data[x].mapstruct.map[0]
        m2 = data[y].mapstruct.map[0]
        yy1, xx1 = grid1 = np.indices(m1.shape)
        ratio = m2.shape[0] / float(m1.shape[0])
        newm2 = scipy.ndimage.map_coordinates(np.nan_to_num(m2), grid1 * ratio)
        mask = (m1 == m1) * (newm2 == newm2) * (m1 > 0) * (newm2 > 0)
        # mask *= (m1>m1[mask].std()) * (newm2>newm2[mask].std())
        rr = ((xx1 - m1.shape[1] / 3.0) ** 2 + (yy1 - m1.shape[0] / 3.0) ** 2) ** 0.5
        # mask *= rr < 5

        beamsize_delta = (
            np.abs(data[y].mapstruct["OMEGA_BEAM_AM"] - data[x].mapstruct["OMEGA_BEAM_AM"]) / np.pi / 2
        ) ** 0.5
        am_per_pix = data[y].mapstruct["OMEGA_PIX_AM"] ** 0.5
        kernelwidth = beamsize_delta / am_per_pix
        kernel = make_kernel.make_kernel(m1.shape, kernelwidth=kernelwidth)  # , normalize_kernel=np.max)
        newm1 = convolve.convolve_fft(m1, kernel, interpolate_nan=True)
        newm1 *= data[y].mapstruct["OMEGA_BEAM_AM"] / data[x].mapstruct["OMEGA_BEAM_AM"]

        plot(newm1[mask], newm2[mask], "o", alpha=0.5)

        # kernel = make_kernel.make_kernel(m1.shape, kernelwidth=5)
        # smm1 = convolve.convolve_fft(newm1,kernel, interpolate_nan=True)
        # smm2 = convolve.convolve_fft(newm2,kernel, interpolate_nan=True)
        # plot((newm1-smm1)[mask],(newm2-smm2)[mask],'rs', alpha=0.5)

        xx = np.linspace(newm1[mask].min(), newm1[mask].max())
        plot(xx, xx * (band_waves[x] / band_waves[y]) ** 3.5, "r--")
        plot(xx, xx * (band_waves[x] / band_waves[y]) ** 2, "b:")
        subplots_adjust(hspace=0.3, wspace=0.3)
        xlabel("Band %i: %0.2f mm" % (x, band_waves[x]))