コード例 #1
0
    def update_X(self, X, i, data, tinterp, len_t, objid, contextual_info,
                 otherinfo):
        for j, pb in enumerate(self.passbands):
            if pb not in data:
                print("No", pb, "in objid:", objid)
                continue

            # Drop infinite values
            data.replace([np.inf, -np.inf], np.nan)

            # Get data
            time = data[pb]['time'][0:self.nobs].dropna()
            flux = data[pb]['flux'][0:self.nobs].dropna()
            fluxerr = data[pb]['fluxErr'][0:self.nobs].dropna()
            photflag = data[pb]['photflag'][0:self.nobs].dropna()

            n = len(flux)  # Get vector length (could be less than nobs)

            if n > 1:
                if flux.values[-1] > flux.values[
                        -2]:  # If last values are increasing, then set fill_values to zero
                    f = interp1d(time,
                                 flux,
                                 kind='linear',
                                 bounds_error=False,
                                 fill_value=0.)
                else:
                    f = interp1d(time,
                                 flux,
                                 kind='linear',
                                 bounds_error=False,
                                 fill_value='extrapolate'
                                 )  # extrapolate until all passbands finished.

                fluxinterp = f(tinterp)
                fluxinterp = np.nan_to_num(fluxinterp)
                fluxinterp = fluxinterp.clip(min=0)
                fluxerrinterp = np.zeros(len_t)

                for interp_idx, fluxinterp_val in enumerate(fluxinterp):
                    if fluxinterp_val == 0.:
                        fluxerrinterp[interp_idx] = 0
                    else:
                        nearest_idx = helpers.find_nearest(
                            time, tinterp[interp_idx])
                        fluxerrinterp[interp_idx] = fluxerr[nearest_idx]

                X[i][j][0:len_t] = fluxinterp
                # X[i][j * 2 + 1][0:len_t] = fluxerrinterp

        # Add contextual information
        for jj, c_idx in enumerate(contextual_info, 1):
            try:
                X[i][j + jj][0:len_t] = otherinfo[c_idx] * np.ones(len_t)
            except Exception as e:
                X[i][j +
                     jj][0:len_t] = otherinfo[c_idx].values[0] * np.ones(len_t)

        return X
コード例 #2
0
    def update_X(self, X, i, data, tinterp, len_t, objid, contextual_info,
                 meta_data):
        for j, pb in enumerate(self.passbands):
            # Drop infinite or nan values in any row
            data.remove_rows(np.where(~np.isfinite(data['time']))[0])
            data.remove_rows(np.where(~np.isfinite(data['flux']))[0])
            data.remove_rows(np.where(~np.isfinite(data['fluxErr']))[0])

            # Get data
            pbmask = data['passband'] == pb
            time = data[pbmask]['time'].data
            flux = data[pbmask]['flux'].data
            fluxerr = data[pbmask]['fluxErr'].data
            photflag = data[pbmask]['photflag'].data

            # Mask out times outside of mintime and maxtime
            timemask = (time > self.mintime) & (time < self.maxtime)
            time = time[timemask]
            flux = flux[timemask]
            fluxerr = fluxerr[timemask]
            photflag = photflag[timemask]

            n = len(flux)  # Get vector length (could be less than nobs)

            if n > 1:
                # if flux[-1] > flux[-2]:  # If last values are increasing, then set fill_values to zero
                #     f = interp1d(time, flux, kind='linear', bounds_error=False, fill_value=0.)
                # else:
                #     f = interp1d(time, flux, kind='linear', bounds_error=False,
                #                  fill_value='extrapolate')  # extrapolate until all passbands finished.
                f = interp1d(time,
                             flux,
                             kind='linear',
                             bounds_error=False,
                             fill_value=0.)

                fluxinterp = f(tinterp)
                fluxinterp = np.nan_to_num(fluxinterp)
                fluxinterp = fluxinterp.clip(min=0)
                fluxerrinterp = np.zeros(len_t)

                for interp_idx, fluxinterp_val in enumerate(fluxinterp):
                    if fluxinterp_val == 0.:
                        fluxerrinterp[interp_idx] = 0
                    else:
                        nearest_idx = helpers.find_nearest(
                            time, tinterp[interp_idx])
                        fluxerrinterp[interp_idx] = fluxerr[nearest_idx]

                X[i][j][0:len_t] = fluxinterp
                # X[i][j * 2 + 1][0:len_t] = fluxerrinterp

        # Add contextual information
        for jj, c_info in enumerate(contextual_info, 1):
            X[i][j + jj][0:len_t] = meta_data[c_info] * np.ones(len_t)

        return X