コード例 #1
0
 def from_npz(cls, filename, device, iteration=None):
     if iteration is not None:
         filename = '{}.{}'.format(ensure_npz(filename, inverse=True),
                                   iteration)
     data = np.load(ensure_npz(filename))
     t_matrix = torch.from_numpy(data['t_matrix'])
     means = torch.from_numpy(data['means'])
     inv_covariances = torch.from_numpy(data['inv_covariances'])
     prior_offset = torch.from_numpy(data['prior_offset'])
     return IVectorExtractor(t_matrix, means, inv_covariances, prior_offset,
                             device)
コード例 #2
0
 def save_npz(self, filename):
     np.savez(filename,
              t_matrix=self.t_matrix.cpu().numpy(),
              means=self.means.cpu().numpy(),
              inv_covariances=self.inv_covariances.cpu().numpy(),
              prior_offset=self.prior_offset.cpu().numpy())
     print('I-vector extractor saved to {}'.format(ensure_npz(filename)))
コード例 #3
0
 def from_npz(cls, filename, device):
     data = np.load(ensure_npz(filename))
     weights = torch.from_numpy(data['weights'])
     means = torch.from_numpy(data['means'])
     covariances = torch.from_numpy(data['covariances'])
     return Gmm(means, covariances, weights, device)
コード例 #4
0
    def train(self,
              rxspecifiers,
              feature_loader,
              output_filename,
              settings,
              resume=0):
        if resume < 0:
            resume = 0
        elif resume > 0:
            print('Resuming i-vector extractor training from iteration {}...'.
                  format(resume))
            extractor = IVectorExtractor.from_npz(
                '{}.{}'.format(ensure_npz(output_filename, inverse=True),
                               resume), self.t_matrix.device)
            self.t_matrix = extractor.t_matrix
            self.means = extractor.means
            self.inv_covariances = extractor.inv_covariances
            self.prior_offset = extractor.prior_offset

        print('Training i-vector extractor ({} iterations)...'.format(
            settings.n_iterations))

        n_utts = len(rxspecifiers[0])
        component_batches = self._get_component_batches(
            settings.n_component_batches)

        print('Allocating memory for accumulators...')
        z = torch.zeros(self.n_components, device=self.t_matrix.device)
        S = torch.zeros(self.n_components,
                        self.feat_dim,
                        self.feat_dim,
                        device=self.t_matrix.device)
        Y = torch.zeros(self.n_components,
                        self.feat_dim,
                        self.ivec_dim,
                        device=self.t_matrix.device)
        R = torch.zeros(
            self.n_components,
            self.ivec_dim,
            self.ivec_dim,
            device=self.t_matrix.device)  # The biggest memory consumer!
        h = torch.zeros(self.ivec_dim, device=self.t_matrix.device)
        H = torch.zeros(self.ivec_dim,
                        self.ivec_dim,
                        device=self.t_matrix.device)

        iteration_times = []
        start_time = time.time()
        for iteration in range(1, settings.n_iterations + 1):
            iter_start_time = time.time()

            print('Initializing statistics loader...')
            accumulate_2nd_stats = settings.update_covariances and iteration == 1  # 2nd order stats need to be accumulated only once
            stat_loader = self._get_stat_loader(rxspecifiers, feature_loader,
                                                accumulate_2nd_stats,
                                                settings.batch_size_in_utts,
                                                settings.dataloader_workers)

            print('Iterating over batches of utterances...')
            for batch_index, batch in enumerate(stat_loader):

                if accumulate_2nd_stats:
                    n_all, f_all, s_batch_sum = batch
                    S += s_batch_sum.to(self.t_matrix.device)
                else:
                    n_all, f_all = batch

                batch_size = n_all.size()[0]
                print(
                    'Iteration {} ({:.0f} seconds), Batch {}/{}: utterance count = {}'
                    .format(iteration + resume,
                            time.time() - iter_start_time, batch_index + 1,
                            stat_loader.__len__(), batch_size))

                n_all = n_all.to(self.t_matrix.device)
                f_all = f_all.to(self.t_matrix.device)
                if iteration == 1:  # Need to be accumulated only once
                    z += torch.sum(n_all, dim=0)

                means, covariances = self._compute_posterior_means_and_covariances(
                    n_all, f_all, batch_size, component_batches)

                # Accumulating...
                h += torch.sum(means, dim=0)
                yy = torch.baddbmm(covariances, means.unsqueeze(2),
                                   means.unsqueeze(1))
                H += torch.sum(yy, dim=0)
                yy = yy.permute((1, 2, 0))
                for bstart, bend in component_batches:  # Batching over components saves GPU memory
                    n = n_all[:, bstart:bend]
                    f = f_all[bstart:bend, :, :]
                    Y[bstart:bend, :, :] += torch.matmul(f, means)
                    R[bstart:bend, :, :] += torch.matmul(yy, n).permute(
                        (2, 0, 1))

            self.weights = z / torch.sum(z) * n_utts
            h = h / n_utts
            H = H / n_utts
            H = H - torch.ger(h, h)

            # Updating:
            if settings.update_projections:
                self._update_projections(Y, R, component_batches)
            if settings.update_covariances:
                self._update_covariances(Y, R, z, S, component_batches)
            if settings.minimum_divergence:
                self._minimum_divergence_whitening(h, H, component_batches)
            if settings.update_means:
                self._minimum_divergence_centering(h, component_batches)

            print('Zeroing accumulators...')
            Y.zero_()
            R.zero_()
            h.zero_()
            H.zero_()

            if settings.save_every_iteration:
                self.save_npz('{}.{}'.format(
                    ensure_npz(output_filename, inverse=True),
                    iteration + resume))

            iteration_times.append(time.time() - iter_start_time)

        self.save_npz(output_filename)
        print('Training completed in {:.0f} seconds.'.format(time.time() -
                                                             start_time))
        return iteration_times
コード例 #5
0
 def save_npz(self, filename):
     np.savez(filename,
              weights=self.weights.cpu().numpy(),
              means=self.means.cpu().numpy(),
              covariances=self.covariances.cpu().numpy())
     print('GMM saved to {}'.format(ensure_npz(filename)))