コード例 #1
0
def getImageProbMapCutoutFromFile(channelname, sliceInd, startX, startY,
                                  deltaX, deltaY, filepath):
    """
    Load cutout of a slice of a tiff image

    Parameters
    -----------
    channelname : str
    sliceInd : ind
    startX : ind
    startY : ind
    deltaX : ind
    deltaY : ind
    filepath : str

    Returns
    -----------
    cutout: 2D numpy array
    """

    folderpath = os.path.join(filepath, channelname)
    img = da.imreadtiffSingleSlice(folderpath, sliceInd)
    img.astype(np.float64)

    probimg = syn.getProbMap(img)
    cutout = probimg[startY:(startY + deltaY), startX:(startX + deltaX)]

    return cutout
コード例 #2
0
def measure_yfp(vol, thresh):
    """ measure the number of yfp voxels in a volume

    Parameters
    ------------
    vol - 3d numpy array 
    thresh - float threshold
    Return
    -----------
    result - int 
    """
    probvol = syn.getProbMap(vol)
    probvol = probvol > thresh
    result = np.sum(probvol)
    return result
コード例 #3
0
def segment_dendrites(vol, thresh, num_of_dendrites, output_dir):
    """ segment dendrites

    Parameters
    ------------
    vol - 3d numpy array 
    thresh - float threshold
    Return
    -----------
    result - int 
    """
    probvol = syn.getProbMap(vol)
    bw_vol = probvol > thresh
    SE = morph.ball(5)
    bw_vol = morph.closing(bw_vol, SE)
    label_vol = measure.label(bw_vol, connectivity=2)
    stats = measure.regionprops(label_vol)
    # sort by size
    size_list = []
    for stat in stats:
        size_list.append(stat.area)

    ind_list = np.flip(np.argsort(size_list), 0)

    for n in range(0, num_of_dendrites):
        dendrite = stats[ind_list[n]]
        list_of_coords = dendrite.coords
        list_of_coords = np.array(list_of_coords)
        filename = 'dendrite' + str(n) + '.off'
        output_filename = os.path.join(output_dir, filename)
        write_off_file(list_of_coords, output_filename)
        stl_filename = os.path.join(output_dir, 'dendrite' + str(n) + '.stl')
        print('number of points: ', str(len(list_of_coords)))

        # if len(list_of_coords) < 40000:
        #     print('starting meshlab', output_filename)
        #     subprocess.call(["meshlabserver", "-i", output_filename,
        #                      "-o", stl_filename, "-s", "ballpivot.mlx"])
        # else:
        #     print('starting meshlab subsampling', output_filename)
        #     subprocess.call(["meshlabserver", "-i", output_filename,
        #                      "-o", stl_filename, "-s", "ballpivot2.mlx"])

        print('stl created', stl_filename)

    return stl_filename
コード例 #4
0
def run_SACT(synaptic_volumes, query, thresh, resolution,
             target_antibody_name):
    """
    Run SACT. 

    MEASURES
    - Puncta Density
    - Average punctum size
    - Standard deviation of the size
    - Synapse density
    - Target Specificity Ratio (tsr)
    - Raw data mean/std

    Parameters
    -----------
    synaptic_volumes : dict - has two keys, 'postsynaptic' and 'presynaptic.' Each key contains a list of volumes. 
    query : dict
    thresh : float
    resolution : dict

    Returns
    -----------
    antibody_measure : AntibodyAnalysis()
    """

    antibody_measure = AntibodyAnalysis(query)

    # Get data volume
    antibody_measure.volume_um3 = getdatavolume(synaptic_volumes, resolution)
    print('data volume: ', antibody_measure.volume_um3, 'um3')

    # Check to see if user supplied blobsize
    if 'punctumSize' in query.keys():
        blobsize = query['punctumSize']
        edge_win = int(np.ceil(blobsize * 1.5))

    # Data
    presynaptic_volumes = synaptic_volumes['presynaptic']
    postsynaptic_volumes = synaptic_volumes['postsynaptic']

    # Number of slices each blob should span
    preIF_z = query['preIF_z']
    postIF_z = query['postIF_z']

    # Compute raw mean and standard deviation
    antibody_measure = compute_raw_measures(presynaptic_volumes,
                                            antibody_measure, 'presynaptic')

    # SNR test
    raw_presynaptic_volumes = []
    for vol in presynaptic_volumes:
        raw_presynaptic_volumes.append(np.copy(vol))

    for n in range(0, len(presynaptic_volumes)):
        presynaptic_volumes[n] = syn.getProbMap(
            presynaptic_volumes[n])  # Step 1
        presynaptic_volumes[n] = syn.convolveVolume(presynaptic_volumes[n],
                                                    blobsize)  # Step 2
        if preIF_z[n] > 1:
            factor_vol = syn.computeFactor(presynaptic_volumes[n],
                                           int(preIF_z[n]))  # Step 3
            presynaptic_volumes[n] = presynaptic_volumes[n] * factor_vol

    # Compute single channel measurements
    antibody_measure = compute_single_channel_measurements(
        presynaptic_volumes, antibody_measure, thresh, 'presynaptic')

    # SNR test
    antibody_measure = compute_SNR_synapticside(raw_presynaptic_volumes,
                                                presynaptic_volumes, thresh,
                                                antibody_measure,
                                                'presynaptic')

    print('Computed presynaptic single channel measurements')

    # Compute raw mean and standard deviation
    antibody_measure = compute_raw_measures(postsynaptic_volumes,
                                            antibody_measure, 'postsynaptic')

    # SNR test
    raw_postsynaptic_volumes = []
    for vol in postsynaptic_volumes:
        raw_postsynaptic_volumes.append(np.copy(vol))

    for n in range(0, len(postsynaptic_volumes)):
        postsynaptic_volumes[n] = syn.getProbMap(
            postsynaptic_volumes[n])  # Step 1
        postsynaptic_volumes[n] = syn.convolveVolume(postsynaptic_volumes[n],
                                                     blobsize)  # Step 2
        if postIF_z[n] > 1:
            factor_vol = syn.computeFactor(postsynaptic_volumes[n],
                                           int(postIF_z[n]))  # Step 3
            postsynaptic_volumes[n] = postsynaptic_volumes[n] * factor_vol

    # Compute single channel measurements
    antibody_measure = compute_single_channel_measurements(
        postsynaptic_volumes, antibody_measure, thresh, 'postsynaptic')

    # SNR test
    antibody_measure = compute_SNR_synapticside(raw_postsynaptic_volumes,
                                                postsynaptic_volumes, thresh,
                                                antibody_measure,
                                                'postsynaptic')
    print('Computed postsynaptic single channel measurements')

    #"""
    if len(postsynaptic_volumes) == 0:
        resultVol = syn.combinePrePostVolumes(presynaptic_volumes,
                                              postsynaptic_volumes, edge_win,
                                              blobsize)
    else:
        resultVol = syn.combinePrePostVolumes(postsynaptic_volumes,
                                              presynaptic_volumes, edge_win,
                                              blobsize)

    # Compute whole statistics
    label_vol = measure.label(resultVol > thresh)
    stats = measure.regionprops(label_vol)
    antibody_measure.synapse_density = len(stats) / antibody_measure.volume_um3
    antibody_measure.synapse_count = len(stats)

    antibody_measure = calculuate_target_ratio(antibody_measure,
                                               target_antibody_name)
    #"""
    return antibody_measure