def test_cross_validation_fit_02(self): np.random.seed(42) inputs = np.random.uniform(-1, 1, 15).reshape(5, -1) outputs = np.random.uniform(0, 5, 10).reshape(5, -1) gradients = np.random.uniform(-1, 1, 30).reshape(5, 2, 3) ss = ActiveSubspaces(dim=1) csv = CrossValidation(inputs=inputs, outputs=outputs, gradients=gradients, folds=3, subspace=ss) csv.fit(inputs, gradients, outputs) self.assertIsNotNone(csv.gp)
def test_cross_validation_fit_01(self): np.random.seed(42) inputs = np.random.uniform(-1, 1, 15).reshape(5, -1) outputs = np.random.uniform(0, 5, 10).reshape(5, -1) gradients = np.random.uniform(-1, 1, 30).reshape(5, 2, 3) ss = ActiveSubspaces(dim=2, method='exact') csv = CrossValidation(inputs=inputs, outputs=outputs, gradients=gradients, folds=3, subspace=ss) csv.fit(inputs, gradients, outputs) self.assertEqual(csv.gp.X.shape[1], 2)