コード例 #1
0
ファイル: rte.py プロジェクト: jorgeecardona/domlin_fever
def entrance(mode, config, estimator=None):
    if config is not None:
        Config.load_config(config)
    if Config.estimator_name == 'esim':
        main_fasttext(mode, config, estimator)
    else:
        main(mode, config, estimator)
コード例 #2
0
def main(args=NullArgs()):
    LogHelper.setup()
    logger = LogHelper.get_logger(
        os.path.splitext(os.path.basename(__file__))[0])
    args.mode = Mode.PREDICT
    if args.config is not None:
        Config.load_config(args.config)

    if args.out_file is not None:
        Config.relative_path_submission = args.out_file

    if args.in_file is not None:
        Config.relative_path_test_file = args.in_file

    if args.database is not None:
        Config.relative_path_db = args.database

    print("relative_path_db " + Config.relative_path_db)
    print("raw_test_set " + Config.raw_test_set())

    if os.path.exists(Config.test_doc_file):
        os.remove(Config.test_doc_file)
    if os.path.exists(Config.test_set_file):
        os.remove(Config.test_set_file)

    if args.mode in {Mode.PIPELINE, Mode.PREDICT, Mode.PREDICT_ALL_DATASETS}:
        logger.info(
            "=========================== Sub-task 1. Document Retrieval =========================================="
        )
        document_retrieval(logger, args.mode)
    if args.mode in {
            Mode.PIPELINE_NO_DOC_RETR, Mode.PIPELINE, Mode.PREDICT,
            Mode.PREDICT_NO_DOC_RETR, Mode.PREDICT_ALL_DATASETS,
            Mode.PREDICT_NO_DOC_RETR_ALL_DATASETS
    }:
        logger.info(
            "=========================== Sub-task 2. Sentence Retrieval =========================================="
        )
        sentence_retrieval_ensemble(logger, args.mode)
    logger.info(
        "=========================== Sub-task 3. Claim Validation ============================================"
    )
    rte(logger, args, args.mode)
コード例 #3
0

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--mode', help='\'train\' or \'test\'', required=True)
    parser.add_argument('--config',
                        help='/path/to/config/file, in JSON format')
    args = parser.parse_args()
    print(args)
    print(type(args))
    LogHelper.setup()
    logger = LogHelper.get_logger(
        os.path.splitext(os.path.basename(__file__))[0] + "_" + args.mode)
    logger.info("parameters:\n" + str(vars(args)))
    if args.config is not None:
        Config.load_config(args.config)
    logger.info("scorer type: " + Config.estimator_name)
    logger.info("random seed: " + str(Config.seed))
    logger.info("ESIM arguments: " + str(Config.esim_hyper_param))
    # loading FastText takes long time, so better pickle the loaded FastText model
    # if os.path.splitext(Config.fasttext_path)[1] == '.p':
    #    with open(Config.fasttext_path, "rb") as ft_file:
    #        fasttext_model = pickle.load(ft_file)
    # else:
    #    fasttext_model = Config.fasttext_path
    if hasattr(Config, 'is_snopes'):
        is_snopes = Config.is_snopes
    else:
        is_snopes = False
    logger.debug("is_snopes: " + str(is_snopes))
コード例 #4
0
def main(mode: RTERunPhase, config=None, estimator=None):
    LogHelper.setup()
    logger = LogHelper.get_logger(
        os.path.splitext(os.path.basename(__file__))[0] + "_" + str(mode))
    if config is not None and isinstance(config, str):
        logger.info("model: " + str(mode) + ", config: " + str(config))
        Config.load_config(config)
    logger.info("scorer type: " + Config.estimator_name)
    logger.info("random seed: " + str(Config.seed))
    logger.info("ESIM arguments: " + str(Config.esim_hyper_param))
    # loading FastText takes long time, so better pickle the loaded FastText model
    if os.path.splitext(Config.fasttext_path)[1] == '.p':
        with open(Config.fasttext_path, "rb") as ft_file:
            fasttext_model = pickle.load(ft_file)
    else:
        fasttext_model = Config.fasttext_path
    if mode == RTERunPhase.train:
        # # training mode
        training_set, fasttext_model, vocab, embeddings = embed_data_set_with_glove_and_fasttext_claim_only(
            Config.training_set_file,
            fasttext_model,
            glove_path=Config.glove_path,
            threshold_h_sent_size=Config.max_sentence_size)
        h_sent_sizes = training_set['data']['h_sent_sizes']
        h_sizes = np.ones(len(h_sent_sizes), np.int32)
        training_set['data']['h_sent_sizes'] = np.expand_dims(h_sent_sizes, 1)
        training_set['data']['h_sizes'] = h_sizes
        training_set['data']['h_np'] = np.expand_dims(
            training_set['data']['h_np'], 1)
        training_set['data']['h_ft_np'] = np.expand_dims(
            training_set['data']['h_ft_np'], 1)

        valid_set, _, _, _ = embed_data_set_with_glove_and_fasttext_claim_only(
            Config.dev_set_file,
            fasttext_model,
            vocab_dict=vocab,
            glove_embeddings=embeddings,
            threshold_h_sent_size=Config.max_sentence_size)
        del fasttext_model
        h_sent_sizes = valid_set['data']['h_sent_sizes']
        h_sizes = np.ones(len(h_sent_sizes), np.int32)
        valid_set['data']['h_sent_sizes'] = np.expand_dims(h_sent_sizes, 1)
        valid_set['data']['h_sizes'] = h_sizes
        valid_set['data']['h_np'] = np.expand_dims(valid_set['data']['h_np'],
                                                   1)
        valid_set['data']['h_ft_np'] = np.expand_dims(
            valid_set['data']['h_ft_np'], 1)

        X_dict = {
            'X_train': training_set['data'],
            'X_valid': valid_set['data'],
            'y_valid': valid_set['label'],
            'embedding': embeddings
        }
        if estimator is None:
            estimator = get_estimator(Config.estimator_name,
                                      Config.ckpt_folder)
        if 'CUDA_VISIBLE_DEVICES' not in os.environ or not str(
                os.environ['CUDA_VISIBLE_DEVICES']).strip():
            os.environ['CUDA_VISIBLE_DEVICES'] = str(
                GPUtil.getFirstAvailable(maxLoad=1.0,
                                         maxMemory=1.0 -
                                         Config.max_gpu_memory)[0])
        estimator.fit(X_dict, training_set['label'])
        save_model(estimator, Config.model_folder, Config.pickle_name, logger)
    elif mode == 'test':
        # testing mode
        restore_param_required = estimator is None
        if estimator is None:
            estimator = load_model(Config.model_folder, Config.pickle_name)
            if estimator is None:
                estimator = get_estimator(Config.estimator_name,
                                          Config.ckpt_folder)
        vocab, embeddings = load_whole_glove(Config.glove_path)
        vocab = vocab_map(vocab)
        test_set, _, _, _ = embed_data_set_with_glove_and_fasttext_claim_only(
            Config.test_set_file,
            fasttext_model,
            vocab_dict=vocab,
            glove_embeddings=embeddings,
            threshold_h_sent_size=Config.max_sentence_size)
        del fasttext_model
        h_sent_sizes = test_set['data']['h_sent_sizes']
        h_sizes = np.ones(len(h_sent_sizes), np.int32)
        test_set['data']['h_sent_sizes'] = np.expand_dims(h_sent_sizes, 1)
        test_set['data']['h_sizes'] = h_sizes
        test_set['data']['h_np'] = np.expand_dims(test_set['data']['h_np'], 1)
        test_set['data']['h_ft_np'] = np.expand_dims(
            test_set['data']['h_ft_np'], 1)
        x_dict = {'X_test': test_set['data'], 'embedding': embeddings}
        if 'CUDA_VISIBLE_DEVICES' not in os.environ or not str(
                os.environ['CUDA_VISIBLE_DEVICES']).strip():
            os.environ['CUDA_VISIBLE_DEVICES'] = str(
                GPUtil.getFirstAvailable(maxLoad=1.0,
                                         maxMemory=1.0 -
                                         Config.max_gpu_memory)[0])
        predictions = estimator.predict(x_dict, restore_param_required)
        generate_submission(predictions, test_set['id'], Config.test_set_file,
                            Config.submission_file)
        if 'label' in test_set:
            print_metrics(test_set['label'], predictions, logger)
    return estimator