'C': 1.0, 'mu': 1.0, 'alpha': 1.0, 'h**o': 27.2114, 'lumo': 27.2114, 'gap': 27.2114, 'r2': 1.0, 'zpve': 27211.4, 'u0': 27.2114, 'u298': 27.2114, 'h298': 27.2114, 'g298': 27.2114, 'cv': 1.0, 'u0_atom': 27.2114, 'u298_atom': 27.2114, 'h298_atom': 27.2114, 'g298_atom': 27.2114, 'cv_atom': 1.0 } for label in labels: cf = conversion[label] rloader = res.ResultsENN('smp-' + label, reps=[1, 2, 3, 4, 5]) results = rloader.get_all_predictions() summary = met.evaluate_average(results, metric=met.mae, verbose=True, select=3) summary = [(cf * s[0], cf * s[1]) for s in summary] print('%9s: %6.3f \pm %6.3f' % (label, *summary[2]))
'A': 1.0, 'B': 1.0, 'C': 1.0, 'mu': 1.0, 'alpha': 1.0, 'h**o': 27.2114, 'lumo': 27.2114, 'gap': 27.2114, 'r2': 1.0, 'zpve': 27211.4, 'u0': 27.2114, 'u298': 27.2114, 'h298': 27.2114, 'g298': 27.2114, 'cv': 1.0, 'u0_atom': 27.2114, 'u298_atom': 27.2114, 'h298_atom': 27.2114, 'g298_atom': 27.2114, 'cv_atom': 1.0 } for label in labels: name = f'logs/smp_test_{label}/smp' cf = conversion[label] rloader = res.ResultsGNN(name, reps=[0, 1, 2]) results = rloader.get_all_predictions() summary = met.evaluate_average(results, metric=met.mae, verbose=False) summary = [(cf * s[0], cf * s[1]) for s in summary] print('%9s: %6.3f \pm %6.3f' % (label, *summary[2]))
import numpy as np import torch import atom3d.util.results as res import atom3d.util.metrics as met # Define the training run name = 'logs/msp_test/msp' print(name) # Load training results rloader = res.ResultsGNN(name, reps=[0, 1, 2]) results = rloader.get_all_predictions() # Calculate and print results summary = met.evaluate_average(results, metric=met.auroc, verbose=False) print('Test AUROC: %6.3f \pm %6.3f' % summary[2]) summary = met.evaluate_average(results, metric=met.auprc, verbose=False) print('Test AUPRC: %6.3f \pm %6.3f' % summary[2])
import sys import numpy as np import torch import atom3d.util.results as res import atom3d.util.metrics as met seqid = sys.argv[1] # Define the training run name = f'logs/lba_test_{seqid}/lba' print(name) # Load training results rloader = res.ResultsGNN(name, reps=[0, 1, 2]) results = rloader.get_all_predictions() # Calculate and print results summary = met.evaluate_average(results, metric=met.rmse, verbose=False) print('Test RMSE: %6.3f \pm %6.3f' % summary[2]) summary = met.evaluate_average(results, metric=met.spearman, verbose=False) print('Test Spearman: %6.3f \pm %6.3f' % summary[2]) summary = met.evaluate_average(results, metric=met.pearson, verbose=False) print('Test Pearson: %6.3f \pm %6.3f' % summary[2])
# Load training results rloader = res.ResultsGNN(name, reps=[0, 1, 2]) results = rloader.get_target_specific_predictions() # Calculate and print results summary = met.evaluate_per_target_average(results['per_target'], metric=met.spearman, verbose=False) print('Test Spearman (per-target): %6.3f \pm %6.3f' % summary[2]) summary = met.evaluate_per_target_average(results['per_target'], metric=met.pearson, verbose=False) print('Test Pearson (per-target): %6.3f \pm %6.3f' % summary[2]) summary = met.evaluate_per_target_average(results['per_target'], metric=met.kendall, verbose=False) print('Test Kendall (per-target): %6.3f \pm %6.3f' % summary[2]) summary = met.evaluate_average(results['global'], metric=met.spearman, verbose=False) print('Test Spearman (global): %6.3f \pm %6.3f' % summary[2]) summary = met.evaluate_average(results['global'], metric=met.pearson, verbose=False) print('Test Pearson (global): %6.3f \pm %6.3f' % summary[2]) summary = met.evaluate_average(results['global'], metric=met.kendall, verbose=False) print('Test Kendall (global): %6.3f \pm %6.3f' % summary[2])