コード例 #1
0
ファイル: Loader.py プロジェクト: yangvnks/Ev-SegNet
    def _perform_augmentation_segmentation(self,
                                           img,
                                           label,
                                           mask_image,
                                           augmenter,
                                           event=None,
                                           events=False):
        seq_image, seq_label, seq_mask, seq_event = get_augmenter(
            name=augmenter, c_val=255)

        # apply some contrast  to de rgb image
        img = img.reshape(sum(((1, ), img.shape), ()))
        img = seq_image.augment_images(img)
        img = img.reshape(img.shape[1:])

        label = label.reshape(sum(((1, ), label.shape), ()))
        label = seq_label.augment_images(label)
        label = label.reshape(label.shape[1:])

        mask_image = mask_image.reshape(sum(((1, ), mask_image.shape), ()))
        mask_image = seq_mask.augment_images(mask_image)
        mask_image = mask_image.reshape(mask_image.shape[1:])

        if events:
            event = event.reshape(sum(((1, ), event.shape), ()))
            # event = self.augment_event(event)
            event = seq_event.augment_images(event)
            event = event.reshape(event.shape[1:])
            return img, label, mask_image, event

        return img, label, mask_image
コード例 #2
0
ファイル: Loader.py プロジェクト: Shathe/MiniNet-v2
    def _perform_augmentation_segmentation(self, img, label, mask_image,
                                           augmenter):
        seq_image_contrast, seq_image_translation, seq_label, seq_mask = get_augmenter(
            name=augmenter, c_val=self.ignore_label)

        # apply some contrast  to de rgb image
        img = img.reshape(sum(((1, ), img.shape), ()))
        img = seq_image_contrast.augment_images(img)
        img = img.reshape(img.shape[1:])

        # Apply shifts and rotations to the mask, labels and image

        # Reshapes for the AUGMENTER framework
        # the loops are due to the external library failures
        img = img.reshape(sum(((1, ), img.shape), ()))
        img = seq_image_translation.augment_images(img)
        img = img.reshape(img.shape[1:])

        label = label.reshape(sum(((1, ), label.shape), ()))
        label = seq_label.augment_images(label)
        label = label.reshape(label.shape[1:])

        mask_image = mask_image.reshape(sum(((1, ), mask_image.shape), ()))
        mask_image = seq_mask.augment_images(mask_image)
        mask_image = mask_image.reshape(mask_image.shape[1:])

        return img, label, mask_image
コード例 #3
0
ファイル: Loader.py プロジェクト: Shathe/MiniNet-v2
    def _get_batch_rgb(self, size=32, train=True, augmenter=None):

        x = np.zeros([size, self.height, self.width, self.dim],
                     dtype=np.float32)
        y = np.zeros([size], dtype=np.uint8)

        if train:
            file_list = self.train_list
            folder = '/train/'
            # Get [size] random numbers
            indexes = [
                i % len(file_list)
                for i in range(self.index_train, self.index_train + size)
            ]
            self.index_train = indexes[-1] + 1

        else:
            file_list = self.test_list
            folder = '/test/'
            # Get [size] random numbers
            indexes = [
                i % len(file_list)
                for i in range(self.index_test, self.index_test + size)
            ]
            self.index_test = indexes[-1] + 1

        random_files = [file_list[number] for number in indexes]
        classes = [
            self.classes[file.split(folder)[1].split('/')[0]]
            for file in random_files
        ]

        for index in range(size):
            img = cv2.imread(random_files[index])
            if img is None:
                print(random_files[index])
                print(indexes[index])

            if img.shape[1] != self.width or img.shape[0] != self.height:
                img = cv2.resize(img, (self.width, self.height),
                                 interpolation=cv2.INTER_AREA)

            x[index, :, :, :] = img
            y[index] = classes[index]
        # the labeling to categorical (if 5 classes and value is 2:  2 -> [0,0,1,0,0])
        y = to_categorical(y, num_classes=self.n_classes)
        # augmentation
        if augmenter:
            augmenter_seq = get_augmenter(name=augmenter)
            x = augmenter_seq.augment_images(x)

        # x = x.astype(np.float32)
        # tf.keras.applications.imagenet_utils.preprocess_input(x, mode='tf')
        # x = tf.keras.applications.xception.preprocess_input(x)
        x = x.astype(np.float32) / 255.0 - 0.5

        return x, y
コード例 #4
0
    def _perform_augmentation_segmentation(self, img, label, mask_image,
                                           augmenter):
        seq_image, seq_label, seq_mask = get_augmenter(name=augmenter,
                                                       c_val=255)

        #apply some contrast  to de rgb image
        img = img.reshape(sum(((1, ), img.shape), ()))
        img = seq_image.augment_images(img)
        img = img.reshape(img.shape[1:])

        label = label.reshape(sum(((1, ), label.shape), ()))
        label = seq_label.augment_images(label)
        label = label.reshape(label.shape[1:])

        mask_image = mask_image.reshape(sum(((1, ), mask_image.shape), ()))
        mask_image = seq_mask.augment_images(mask_image)
        mask_image = mask_image.reshape(mask_image.shape[1:])

        return img, label, mask_image
コード例 #5
0
ファイル: Loader.py プロジェクト: nebur395/uCode2018
    def _get_batch_rgb(self, size=32, train=True, augmenter=None):

        x = np.zeros([size, self.height, self.width, self.dim],
                     dtype=np.float32)
        y = np.zeros([size], dtype=np.uint8)

        file_list = self.test_list
        folder = '/test/'
        if train:
            file_list = self.train_list
            folder = '/train/'

        # Get [size] random numbers
        random_files = [
            file_list[random.randint(0,
                                     len(file_list) - 1)]
            for file in range(size)
        ]
        classes = [
            self.classes[file.split(folder)[1].split('/')[0]]
            for file in random_files
        ]

        for index in range(size):
            img = cv2.imread(random_files[index])
            if img.shape[1] != self.width and img.shape[0] != self.height:
                img = cv2.resize(img, (self.width, self.height),
                                 interpolation=cv2.INTER_AREA)

            x[index, :, :, :] = img
            y[index] = classes[index]
        # the labeling to categorical (if 5 classes and value is 2:  2 -> [0,0,1,0,0])
        y = to_categorical(y, num_classes=len(self.classes))
        # augmentation
        if augmenter:
            augmenter_seq = get_augmenter(name=augmenter)
            x = augmenter_seq.augment_images(x)
        x = x.astype(np.float32) / 255.0 - 0.5

        return x, y
コード例 #6
0
ファイル: Loader.py プロジェクト: nebur395/uCode2018
    def _get_batch_segmentation(self,
                                size=32,
                                train=True,
                                augmenter=None,
                                index=None,
                                validation=False):

        x = np.zeros([size, self.height, self.width, self.dim],
                     dtype=np.float32)
        y = np.zeros([size, self.height, self.width], dtype=np.uint8)
        mask_expanded = np.ones(
            [size, self.height, self.width, self.n_classes], dtype=np.uint8)

        image_list = self.image_test_list
        label_list = self.label_test_list
        folder = '/test/'
        if train:
            image_list = self.image_train_list
            label_list = self.label_train_list
            folder = '/train/'

        # Get [size] random numbers
        indexes = [
            random.randint(0,
                           len(image_list) - 1) for file in range(size)
        ]
        if index:
            indexes = [i for i in range(index, index + size)]

        random_images = [image_list[number] for number in indexes]
        random_labels = [label_list[number] for number in indexes]

        # for every random image, get the image, label and mask.
        # the augmentation has to be done separately due to augmentation
        for index in range(size):
            img = cv2.imread(random_images[index])
            label = cv2.imread(random_labels[index], 0)
            if img.shape[1] != self.width and img.shape[0] != self.height:
                img = cv2.resize(img, (self.width, self.height),
                                 interpolation=cv2.INTER_AREA)
            if label.shape[1] != self.width and label.shape[0] != self.height:
                label = cv2.resize(label, (self.width, self.height),
                                   interpolation=cv2.INTER_NEAREST)
            macara = mask_expanded[index, :, :, 0]

            if train and augmenter and random.random() < 0.90:
                seq_image2, seq_image, seq_label, seq_mask = get_augmenter(
                    name=augmenter, c_val=self.ignore_label)

                #apply some contrast  to de rgb image
                img = img.reshape(sum(((1, ), img.shape), ()))
                img = seq_image2.augment_images(img)
                img = img.reshape(img.shape[1:])

                if random.random() < 0.90:
                    #Apply shifts and rotations to the mask, labels and image

                    # Reshapes for the AUGMENTER framework
                    # the loops are due to the external library failures

                    cuenta_ignore = sum(sum(sum(img == self.ignore_label)))
                    cuenta_ignore2 = cuenta_ignore
                    i = 0
                    while abs(cuenta_ignore2 - cuenta_ignore) < 5 and i < 15:
                        img = img.reshape(sum(((1, ), img.shape), ()))
                        img = seq_image.augment_images(img)
                        img = img.reshape(img.shape[1:])
                        cuenta_ignore2 = sum(sum(
                            sum(img == self.ignore_label)))
                        i = i + 1

                    cuenta_ignore = sum(sum(label == self.ignore_label))
                    cuenta_ignore2 = cuenta_ignore
                    i = 0
                    while cuenta_ignore2 == cuenta_ignore and i < 15:
                        label = label.reshape(sum(((1, ), label.shape), ()))
                        label = seq_label.augment_images(label)
                        label = label.reshape(label.shape[1:])
                        cuenta_ignore2 = sum(sum(label == self.ignore_label))
                        i = i + 1

                    cuenta_ignore = sum(sum(macara == self.ignore_label))
                    cuenta_ignore2 = cuenta_ignore
                    i = 0
                    while cuenta_ignore2 == cuenta_ignore and i < 15:
                        macara = macara.reshape(sum(((1, ), macara.shape), ()))
                        macara = seq_mask.augment_images(macara)
                        macara = macara.reshape(macara.shape[1:])
                        cuenta_ignore2 = sum(sum(macara == self.ignore_label))
                        i = i + 1

            if self.ignore_label and not validation:
                #ignore_label to value 0-n_classes and add it to mask
                mask_ignore = label == self.ignore_label
                macara[mask_ignore] = 0
                label[mask_ignore] = 0

            x[index, :, :, :] = img
            y[index, :, :] = label
            for i in xrange(mask_expanded.shape[3]):
                mask_expanded[index, :, :, i] = macara

        # the labeling to categorical (if 5 classes and value is 2:  2 -> [0,0,1,0,0])
        a, b, c = y.shape
        y = y.reshape((a * b * c))
        if self.ignore_label and validation:
            y = to_categorical(y, num_classes=self.n_classes + 1)
        else:
            y = to_categorical(y, num_classes=self.n_classes)
        y = y.reshape((a, b, c, self.n_classes)).astype(np.uint8)
        x = x.astype(np.float32) / 255.0 - 0.5
        return x, y, mask_expanded
コード例 #7
0
        except:
            pass
        # all the trainable ops
        tf.summary.histogram(op.name, op)

total_parameters = 0
for variable in tf.trainable_variables():
    # shape is an array of tf.Dimension
    shape = variable.get_shape()
    variable_parameters = 1
    for dim in shape:
        variable_parameters *= dim.value
    total_parameters += variable_parameters
print("Total parameters of the net: " + str(total_parameters))

augmenter_seq = get_augmenter(name='caltech')
show_each_steps = 100
saver = tf.train.Saver(tf.global_variables())

with tf.Session() as sess:
    ckpt = tf.train.get_checkpoint_state('./model')  # './model/best'
    ckpt_best = tf.train.get_checkpoint_state('./model/best')  # './model/best'
    if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
        saver.restore(sess, ckpt.model_checkpoint_path)
    else:
        sess.run(tf.global_variables_initializer())

    merged = tf.summary.merge_all()
    writer_train = tf.summary.FileWriter('./logs/train', sess.graph)
    writer_test = tf.summary.FileWriter('./logs/test', sess.graph)
コード例 #8
0
    def _get_batch_segmentation(self, size=32, train=True, augmenter=None):
        # init numpy arrays
        x = np.zeros([size, self.height, self.width, self.dim],
                     dtype=np.float32)
        y = np.zeros([size, self.height, self.width], dtype=np.uint8)
        mask = np.ones([size, self.height, self.width], dtype=np.float32)

        if train:
            image_list = self.image_train_list
            label_list = self.label_train_list
            index_files = self.index_train
            folder = '/train/'
            # Get [size] random numbers
            indexes = [
                i % len(image_list)
                for i in range(self.index_train, self.index_train + size)
            ]
            self.index_train = indexes[-1] + 1

        else:
            image_list = self.image_test_list
            label_list = self.label_test_list
            folder = '/test/'
            # Get [size] random numbers
            indexes = [
                i % len(image_list)
                for i in range(self.index_test, self.index_test + size)
            ]
            self.index_test = indexes[-1] + 1

        random_images = [image_list[number] for number in indexes]
        random_labels = [label_list[number] for number in indexes]

        # for every random image, get the image, label and mask.
        # the augmentation has to be done separately due to augmentation
        for index in range(size):
            if self.dim == 1:
                img = cv2.imread(random_images[index], 0)
            else:
                img = cv2.imread(random_images[index])

            label = cv2.imread(random_labels[index], 0)
            # check if error
            if img is None or label is None:
                print(random_images[index])
                print(random_labels[index])
                print(indexes[index])

            if img.shape[1] != self.width or img.shape[0] != self.height:
                img = cv2.resize(img, (self.width, self.height),
                                 interpolation=cv2.INTER_AREA)
            if label.shape[1] != self.width or label.shape[0] != self.height:
                label = cv2.resize(label, (self.width, self.height),
                                   interpolation=cv2.INTER_NEAREST)

            mask_image = mask[index, :, :]
            if train and augmenter:

                seq_image_contrast, seq_image_translation, seq_label, seq_mask = get_augmenter(
                    name=augmenter, c_val=self.ignore_label)

                #apply some contrast  to de rgb image
                img = img.reshape(sum(((1, ), img.shape), ()))
                img = seq_image_contrast.augment_images(img)
                img = img.reshape(img.shape[1:])

                #Apply shifts and rotations to the mask, labels and image

                # Reshapes for the AUGMENTER framework
                # the loops are due to the external library failures
                img = img.reshape(sum(((1, ), img.shape), ()))
                img = seq_image_translation.augment_images(img)
                img = img.reshape(img.shape[1:])

                label = label.reshape(sum(((1, ), label.shape), ()))
                label = seq_label.augment_images(label)
                label = label.reshape(label.shape[1:])

                mask_image = mask_image.reshape(
                    sum(((1, ), mask_image.shape), ()))
                mask_image = seq_mask.augment_images(mask_image)
                mask_image = mask_image.reshape(mask_image.shape[1:])

            # modify the mask and the labels. Mask

            mask_ignore = label == self.ignore_label
            mask_image[
                mask_ignore] = 0  # The ignore pixels will have a value o 0 in the mask
            label[
                mask_ignore] = self.n_classes  # The ignore label will be n_classes

            if self.dim == 1:
                img = np.reshape(img, (img.shape[0], img.shape[1], self.dim))

            x[index, :, :, :] = img
            y[index, :, :] = label
            mask[index, :, :] = mask_image

        # Apply weights to the mask
        mask = self._from_binarymask_to_weighted_mask(y, mask)

        # the labeling to categorical (if 5 classes and value is 2:  2 -> [0,0,1,0,0])
        a, b, c = y.shape
        y = y.reshape((a * b * c))

        # Convert to categorical. Add one class for ignored pixels
        y = to_categorical(y, num_classes=self.n_classes + 1)
        y = y.reshape((a, b, c, self.n_classes + 1)).astype(np.uint8)

        #tf.keras.applications.imagenet_utils.preprocess_input(x, mode='tf')
        #x = tf.keras.applications.xception.preprocess_input(x)
        x = x.astype(np.float32) / 255.0 - 0.5
        return x, y, mask