コード例 #1
0
ファイル: adress_cl_center.py プロジェクト: DoraMemo-x/aumix
chords = [
    m21.chord.Chord((soprano[i], alto[i], tenor[i], bass[i]))
    for i in range(len(soprano))
]

# row = chord, column = melody
chord_freqs = np.array([[pitch.frequency for pitch in chord.pitches]
                        for chord in chords])

note_sigs = [[
    sts.ClarinetApproxSignal(freq=freq,
                             duration=note_duration,
                             samp_rate=samp_rate) for freq in chord_freqs.T[i]
] for i in range(len(chord_freqs))]

melody_data = np.array([nst.NonStationarySignal(ns).data for ns in note_sigs])

left_signal = np.sum((left_intensities * melody_data.T).T, axis=0)
right_signal = np.sum(((1 - left_intensities) * melody_data.T).T, axis=0)
src = np.array((left_signal, right_signal))

_, left_recons, right_recons, extra = adress.adress(
    left_signal=left_signal,
    right_signal=right_signal,
    samp_rate=samp_rate,
    left_ds=left_ds,
    left_Hs=left_Hs,
    right_ds=right_ds,
    right_Hs=right_Hs,
    beta=beta,
    window=window,
コード例 #2
0
durations = [1] * n_signals
# durations = [max(1 - i * 0.25, 0.25) for i in range(n_signals)]

window = "blackmanharris"

#
# Generate data
#
freqs = np.arange(n_signals) * freq_inc + base_freq

signals = [
    ss.SineSignal(freq=freqs[i], duration=durations[i], samp_rate=samp_rate)
    for i in range(len(freqs))
]
nst = nsts.NonStationarySignal(signals)

# Compute FFT

# Compute STFT
# f: Array of sample frequencies, len 129 real numbers. [0. , 172.265625 , 344.53125...]
# t: Array of segment times, len 1380 real numbers. [0. , 0.00290249 , 0.00580499...]
# Zxx: STFT of x
f, t, Zxx = signal.stft(x=nst.data,
                        fs=nst.samp_rate,
                        window=window,
                        nperseg=100)
print(t.shape, f.shape, Zxx.shape)
# print(f.shape, f[:10])
# print(t.shape, t[:10])
# print(Zxx.shape, Zxx[:10])
コード例 #3
0
ファイル: ft_chord_melody.py プロジェクト: DoraMemo-x/aumix
#
# Generate signals
#
freqs = anotes.major_chord(scale_name=scale_name, n_notes=n_notes, output="freq")
note_names = " ".join([n.nameWithOctave for n in
                       anotes.major_chord(scale_name=scale_name, n_notes=n_notes,
                                          output="note")])
underline_note_names = note_names.replace(" ", "_")
duration = sum(durations)

signals = [ss.SineSignal(freq=freqs[i],
                         duration=durations[i],
                         samp_rate=samp_rate)
           for i in range(len(freqs))]
melody = nsts.NonStationarySignal(signals)
chord = sts.StationarySignal(sin_freqs=freqs,
                             sin_coeffs=[1] * n_notes,
                             duration=duration,
                             samp_rate=samp_rate)

# Only consider positive frequencies (since the spectrum is symmetric)
melody_fft_x = fftfreq(melody.samp_nums.shape[0], 1 / melody.samp_rate)
chord_fft_x = fftfreq(chord.samp_nums.shape[0], 1 / chord.samp_rate)
slice_num = np.where(melody_fft_x > freqs[-1] * 2)[0][0]

# FFT of both
melody_fft = fft(melody.data)[:slice_num] / (melody.duration * samp_rate)
chord_fft = fft(chord.data)[:slice_num] / (chord.duration * samp_rate)

#