コード例 #1
0
    def update_descriptors(self):
        if self.kernel.value is None:
            raise ValueError("Integrator was passed kernel None")

        logger.debug(
            'Updating KernelIntegrator "%s" descriptors based on input descriptor: %s.',
            self.name, self.sink.descriptor)

        record_length = self.sink.descriptor.axes[-1].num_points()
        if self.simple_kernel.value:
            time_pts = self.sink.descriptor.axes[-1].points
            time_step = time_pts[1] - time_pts[0]
            kernel = np.zeros(record_length, dtype=np.complex128)
            sample_start = int(self.box_car_start.value / time_step)
            sample_stop = int(self.box_car_stop.value / time_step) + 1
            kernel[sample_start:sample_stop] = 1.0
            # add modulation
            kernel *= np.exp(2j * np.pi * self.frequency.value * time_step *
                             time_pts)
        else:
            kernel = eval(self.kernel.value.encode('unicode_escape'))
        # pad or truncate the kernel to match the record length
        if kernel.size < record_length:
            self.aligned_kernel = np.append(
                kernel,
                np.zeros(record_length - kernel.size, dtype=np.complex128))
        else:
            self.aligned_kernel = np.resize(kernel, record_length)

        # Integrator reduces and removes axis on output stream
        # update output descriptors
        output_descriptor = DataStreamDescriptor()
        # TODO: handle reduction to single point
        output_descriptor.axes = self.sink.descriptor.axes[:-1]
        output_descriptor.exp_src = self.sink.descriptor.exp_src
        output_descriptor.dtype = np.complex128
        for os in self.source.output_streams:
            os.set_descriptor(output_descriptor)
            os.end_connector.update_descriptors()
コード例 #2
0
ファイル: channelizer.py プロジェクト: caryan/Auspex
    def update_descriptors(self):
        logger.debug(
            'Updating Channelizer "%s" descriptors based on input descriptor: %s.',
            self.name, self.sink.descriptor)

        # extract record time sampling
        time_pts = self.sink.descriptor.axes[-1].points
        self.record_length = len(time_pts)
        self.time_step = time_pts[1] - time_pts[0]
        logger.debug("Channelizer time_step = {}".format(self.time_step))

        # convert bandwidth normalized to Nyquist interval
        n_bandwidth = self.bandwidth.value * self.time_step * 2
        n_frequency = self.frequency.value * self.time_step * 2

        # arbitrarily decide on three stage filter pipeline
        # 1. first stage decimating filter on real data
        # 2. second stage decimating filter on mixed product to boost n_bandwidth
        # 3. final channel selecting filter at n_bandwidth/2

        # anecdotally don't decimate more than a factor of eight for stability

        self.decim_factors = [1] * 3
        self.filters = [None] * 3

        # first stage decimating filter
        # maximize first stage decimation:
        #     * minimize subsequent stages time taken
        #     * filter and decimate while signal is still real
        #     * first stage decimation cannot be too large or then 2omega signal from mixing will alias
        d1 = 1
        while (d1 < 8) and (2 * n_frequency <=
                            0.8 / d1) and (d1 < self.decimation_factor.value):
            d1 *= 2
            n_bandwidth *= 2
            n_frequency *= 2

        if d1 > 1:
            # create an anti-aliasing filter
            # pass-band to 0.8 * decimation factor; anecdotally single precision needs order <= 4 for stability
            b, a = scipy.signal.cheby1(4, 3, 0.8 / d1)
            b = np.float32(b)
            a = np.float32(a)
            self.decim_factors[0] = d1
            self.filters[0] = (b, a)

        # store decimated reference for mix down
        ref = np.exp(2j * np.pi * self.frequency.value * time_pts[::d1],
                     dtype=np.complex64)
        self.reference_r = np.real(ref)
        self.reference_i = np.imag(ref)

        # second stage filter to bring n_bandwidth/2 up
        # decimation cannot be too large or will impinge on channel bandwidth (keep n_bandwidth/2 <= 0.8)
        d2 = 1
        while (d2 < 8) and ((d1 * d2) < self.decimation_factor.value) and (
                n_bandwidth / 2 <= 0.8):
            d2 *= 2
            n_bandwidth *= 2
            n_frequency *= 2

        if d2 > 1:
            # create an anti-aliasing filter
            # pass-band to 0.8 * decimation factor; anecdotally single precision needs order <= 4 for stability
            b, a = scipy.signal.cheby1(4, 3, 0.8 / d2)
            b = np.float32(b)
            a = np.float32(a)
            self.decim_factors[1] = d2
            self.filters[1] = (b, a)

        # final channel selection filter
        if n_bandwidth < 0.1:
            raise ValueError(
                "Insufficient decimation to achieve stable filter")

        b, a = scipy.signal.cheby1(4, 3, n_bandwidth / 2)
        b = np.float32(b)
        a = np.float32(a)
        self.decim_factors[2] = self.decimation_factor.value // (d1 * d2)
        self.filters[2] = (b, a)

        # update output descriptors
        decimated_descriptor = DataStreamDescriptor()
        decimated_descriptor.axes = self.sink.descriptor.axes[:]
        decimated_descriptor.axes[-1] = deepcopy(self.sink.descriptor.axes[-1])
        decimated_descriptor.axes[-1].points = self.sink.descriptor.axes[
            -1].points[self.decimation_factor.value -
                       1::self.decimation_factor.value]
        decimated_descriptor.axes[
            -1].original_points = decimated_descriptor.axes[-1].points
        decimated_descriptor.exp_src = self.sink.descriptor.exp_src
        decimated_descriptor.dtype = np.complex64
        for os in self.source.output_streams:
            os.set_descriptor(decimated_descriptor)
            if os.end_connector is not None:
                os.end_connector.update_descriptors()