def _apply_default_pipeline_settings(pipeline): from autoPyTorch.pipeline.nodes.network_selector import NetworkSelector from autoPyTorch.pipeline.nodes.loss_module_selector import LossModuleSelector from autoPyTorch.pipeline.nodes.metric_selector import MetricSelector from autoPyTorch.pipeline.nodes.train_node import TrainNode from autoPyTorch.pipeline.nodes.cross_validation import CrossValidation import torch.nn as nn from autoPyTorch.components.metrics.standard_metrics import multilabel_accuracy from autoPyTorch.components.preprocessing.loss_weight_strategies import LossWeightStrategyWeightedBinary AutoNetFeatureData._apply_default_pipeline_settings(pipeline) net_selector = pipeline[NetworkSelector.get_name()] net_selector.add_final_activation('sigmoid', nn.Sigmoid()) loss_selector = pipeline[LossModuleSelector.get_name()] loss_selector.add_loss_module('bce_with_logits', nn.BCEWithLogitsLoss, None, False) loss_selector.add_loss_module('bce_with_logits_weighted', nn.BCEWithLogitsLoss, LossWeightStrategyWeightedBinary(), False) metric_selector = pipeline[MetricSelector.get_name()] metric_selector.add_metric('multilabel_accuracy', multilabel_accuracy) train_node = pipeline[TrainNode.get_name()] train_node.default_minimize_value = False cv = pipeline[CrossValidation.get_name()] cv.use_stratified_cv_split_default = False
def _apply_default_pipeline_settings(pipeline): from autoPyTorch.pipeline.nodes.network_selector import NetworkSelector from autoPyTorch.pipeline.nodes.loss_module_selector import LossModuleSelector from autoPyTorch.pipeline.nodes.metric_selector import MetricSelector from autoPyTorch.pipeline.nodes.train_node import TrainNode from autoPyTorch.pipeline.nodes.cross_validation import CrossValidation import torch.nn as nn from autoPyTorch.components.metrics.standard_metrics import mean_distance AutoNetFeatureData._apply_default_pipeline_settings(pipeline) net_selector = pipeline[NetworkSelector.get_name()] net_selector.add_final_activation('none', nn.Sequential()) loss_selector = pipeline[LossModuleSelector.get_name()] loss_selector.add_loss_module('l1_loss', nn.L1Loss) metric_selector = pipeline[MetricSelector.get_name()] metric_selector.add_metric('mean_distance', mean_distance) train_node = pipeline[TrainNode.get_name()] train_node.default_minimize_value = True cv = pipeline[CrossValidation.get_name()] cv.use_stratified_cv_split_default = False
def _apply_default_pipeline_settings(pipeline): from autoPyTorch.pipeline.nodes.network_selector import NetworkSelector from autoPyTorch.pipeline.nodes.loss_module_selector import LossModuleSelector from autoPyTorch.pipeline.nodes.metric_selector import MetricSelector from autoPyTorch.pipeline.nodes.train_node import TrainNode from autoPyTorch.pipeline.nodes.resampling_strategy_selector import ResamplingStrategySelector from autoPyTorch.pipeline.nodes.cross_validation import CrossValidation from autoPyTorch.pipeline.nodes.one_hot_encoding import OneHotEncoding from autoPyTorch.pipeline.nodes.resampling_strategy_selector import ResamplingStrategySelector from autoPyTorch.components.preprocessing.resampling import RandomOverSamplingWithReplacement, RandomUnderSamplingWithReplacement, SMOTE, \ TargetSizeStrategyAverageSample, TargetSizeStrategyDownsample, TargetSizeStrategyMedianSample, TargetSizeStrategyUpsample import torch.nn as nn from autoPyTorch.components.metrics.standard_metrics import accuracy from autoPyTorch.components.preprocessing.loss_weight_strategies import LossWeightStrategyWeighted AutoNetFeatureData._apply_default_pipeline_settings(pipeline) net_selector = pipeline[NetworkSelector.get_name()] net_selector.add_final_activation('softmax', nn.Softmax(1)) loss_selector = pipeline[LossModuleSelector.get_name()] loss_selector.add_loss_module('cross_entropy', nn.CrossEntropyLoss, None, True) loss_selector.add_loss_module('cross_entropy_weighted', nn.CrossEntropyLoss, LossWeightStrategyWeighted(), True) metric_selector = pipeline[MetricSelector.get_name()] metric_selector.add_metric('accuracy', accuracy) resample_selector = pipeline[ResamplingStrategySelector.get_name()] resample_selector.add_over_sampling_method( 'random', RandomOverSamplingWithReplacement) resample_selector.add_over_sampling_method('smote', SMOTE) resample_selector.add_under_sampling_method( 'random', RandomUnderSamplingWithReplacement) resample_selector.add_target_size_strategy('upsample', TargetSizeStrategyUpsample) resample_selector.add_target_size_strategy( 'downsample', TargetSizeStrategyDownsample) resample_selector.add_target_size_strategy( 'average', TargetSizeStrategyAverageSample) resample_selector.add_target_size_strategy( 'median', TargetSizeStrategyMedianSample) train_node = pipeline[TrainNode.get_name()] train_node.default_minimize_value = False cv = pipeline[CrossValidation.get_name()] cv.use_stratified_cv_split_default = True one_hot_encoding_node = pipeline[OneHotEncoding.get_name()] one_hot_encoding_node.encode_Y = True return pipeline
def test_loss_selector(self): pipeline = Pipeline([LossModuleSelector()]) selector = pipeline[LossModuleSelector.get_name()] selector.add_loss_module("L1", nn.L1Loss) selector.add_loss_module("cross_entropy", nn.CrossEntropyLoss, LossWeightStrategyWeighted(), True) pipeline_config = pipeline.get_pipeline_config( loss_modules=["L1", "cross_entropy"]) pipeline_hyperparameter_config = pipeline.get_hyperparameter_search_space( **pipeline_config).sample_configuration() pipeline_hyperparameter_config["LossModuleSelector:loss_module"] = "L1" pipeline.fit_pipeline( hyperparameter_config=pipeline_hyperparameter_config, train_indices=np.array([0, 1, 2]), X=np.random.rand(3, 3), Y=np.random.rand(3, 2), pipeline_config=pipeline_config, tmp=None) selected_loss = pipeline[ selector.get_name()].fit_output['loss_function'] self.assertEqual(type(selected_loss.function), nn.L1Loss) pipeline_hyperparameter_config[ "LossModuleSelector:loss_module"] = "cross_entropy" pipeline.fit_pipeline( hyperparameter_config=pipeline_hyperparameter_config, train_indices=np.array([0, 1, 2]), X=np.random.rand(3, 3), Y=np.array([[1, 0], [0, 1], [1, 0]]), pipeline_config=pipeline_config, tmp=None) selected_loss = pipeline[ selector.get_name()].fit_output['loss_function'] self.assertEqual(type(selected_loss.function), nn.CrossEntropyLoss) self.assertEqual( selected_loss(torch.tensor([[0.0, 10000.0]]), torch.tensor([[0, 1]])), 0)
def get_default_pipeline(cls): from autoPyTorch.pipeline.base.pipeline import Pipeline from autoPyTorch.pipeline.nodes.autonet_settings import AutoNetSettings from autoPyTorch.pipeline.nodes.optimization_algorithm import OptimizationAlgorithm from autoPyTorch.pipeline.nodes.cross_validation import CrossValidation from autoPyTorch.pipeline.nodes.imputation import Imputation from autoPyTorch.pipeline.nodes.normalization_strategy_selector import NormalizationStrategySelector from autoPyTorch.pipeline.nodes.one_hot_encoding import OneHotEncoding from autoPyTorch.pipeline.nodes.preprocessor_selector import PreprocessorSelector from autoPyTorch.pipeline.nodes.resampling_strategy_selector import ResamplingStrategySelector from autoPyTorch.pipeline.nodes.embedding_selector import EmbeddingSelector from autoPyTorch.pipeline.nodes.network_selector import NetworkSelector from autoPyTorch.pipeline.nodes.optimizer_selector import OptimizerSelector from autoPyTorch.pipeline.nodes.lr_scheduler_selector import LearningrateSchedulerSelector from autoPyTorch.pipeline.nodes.log_functions_selector import LogFunctionsSelector from autoPyTorch.pipeline.nodes.metric_selector import MetricSelector from autoPyTorch.pipeline.nodes.loss_module_selector import LossModuleSelector from autoPyTorch.pipeline.nodes.train_node import TrainNode # build the pipeline pipeline = Pipeline([ AutoNetSettings(), OptimizationAlgorithm([ CrossValidation([ Imputation(), NormalizationStrategySelector(), OneHotEncoding(), PreprocessorSelector(), ResamplingStrategySelector(), EmbeddingSelector(), NetworkSelector(), OptimizerSelector(), LearningrateSchedulerSelector(), LogFunctionsSelector(), MetricSelector(), LossModuleSelector(), TrainNode() ]) ]) ]) cls._apply_default_pipeline_settings(pipeline) return pipeline