def test_get_fit_requirements(self): dataset_properties = { 'numerical_columns': [], 'categorical_columns': [] } pipeline = TabularClassificationPipeline( dataset_properties=dataset_properties) fit_requirements = pipeline.get_fit_requirements() # check if fit requirements is a list of FitRequirement named tuples self.assertIsInstance(fit_requirements, list) for requirement in fit_requirements: self.assertIsInstance(requirement, FitRequirement)
def test_get_fit_requirements(self, fit_dictionary_tabular): dataset_properties = { 'numerical_columns': [], 'categorical_columns': [], 'task_type': 'tabular_classification' } pipeline = TabularClassificationPipeline( dataset_properties=dataset_properties) fit_requirements = pipeline.get_fit_requirements() # check if fit requirements is a list of FitRequirement named tuples assert isinstance(fit_requirements, list) for requirement in fit_requirements: assert isinstance(requirement, FitRequirement)