def callback(self,data): with session.as_default(): assert tf.get_default_session() is session cv_image = self.bridge.imgmsg_to_cv2(data, desired_encoding="mono8") np_image = (cv_image.astype(np.float32) - pixel_depth / 2) / pixel_depth self.input_image = np_image.reshape((1,image_size,image_size,num_channels)).astype(np.float32) prediction = tf.nn.softmax(model(self.input_image)) pre_dict = dict(zip(list(range(num_labels)),prediction.eval()[0])) sorted_pre_dict = sorted(pre_dict.items(), key=operator.itemgetter(1)) name1 = value2name[sorted_pre_dict[-1][0]] value1 = sorted_pre_dict[-1][1] name2 = value2name[sorted_pre_dict[-2][0]] value2 = sorted_pre_dict[-2][1] pre = PredictionMSG() pre.name1, pre.value1, pre.name2, pre.value2 = name1, value1, name2, value2 self.pub1.publish(pre) sys.stdout.write(".") sys.stdout.flush()
def valuate(self, data): config = tf.ConfigProto() # config.log_device_placement = True with tf.Session(graph=graph, config=config) as session: saver.restore(session, "model.ckpt") while self.got_image: self.got_image = False prediction = tf.nn.softmax(model(self.input_image)) pre_dict = dict(zip(list(range(num_labels)), prediction.eval()[0])) sorted_pre_dict = sorted(pre_dict.items(), key=operator.itemgetter(1)) name1 = value2name[sorted_pre_dict[-1][0]] value1 = sorted_pre_dict[-1][1] name2 = value2name[sorted_pre_dict[-2][0]] value2 = sorted_pre_dict[-2][1] pre = PredictionMSG() pre.name1, pre.value1, pre.name2, pre.value2 = name1, value1, name2, value2 self.pub1.publish(pre) sys.stdout.write(".") sys.stdout.flush() """cv_image = self.bridge.imgmsg_to_cv2(data, desired_encoding="mono8")
def valuate(self, data): config = tf.ConfigProto() #config.log_device_placement = True with tf.Session(graph=graph, config=config) as session: saver.restore(session, "new_model.ckpt") while self.got_image: self.got_image = False prediction = tf.nn.softmax(model(self.input_image)) pre_dict = dict( zip(list(range(num_labels)), prediction.eval()[0])) sorted_pre_dict = sorted(pre_dict.items(), key=operator.itemgetter(1)) name1 = value2name[sorted_pre_dict[-1][0]] value1 = sorted_pre_dict[-1][1] name2 = value2name[sorted_pre_dict[-2][0]] value2 = sorted_pre_dict[-2][1] pre = PredictionMSG() pre.name1, pre.value1, pre.name2, pre.value2 = name1, value1, name2, value2 self.pub1.publish(pre) sys.stdout.write(".") sys.stdout.flush() '''cv_image = self.bridge.imgmsg_to_cv2(data, desired_encoding="mono8")